Applied microbiology and biotechnology

A combinatorial approach of N-terminus blocking and codon optimization strategies to enhance the soluble expression of recombinant hIL-7 in E. coli fed-batch culture.

PMID 27342246


Human interleukin-7 (hIL-7) is a therapeutically important cytokine involved in lymphocyte development and survival. In previous reports, a uniformly poor expression of hIL-7 has been shown in Escherichia coli host with the problem of inclusion body formation. In this study, the role of codon optimization and N-terminus blocking using various solubility enhancer fusion tags was explored to improve its soluble expression. The use of codon optimization strategy improved its expression to 80xa0±xa05xa0mg/L at shake flask level. The utilization of pelB leader sequence resulted in an unprocessed protein in the form of cytoplasmic inclusion bodies with lower expression yields. The N-terminus fusion of small ubiquitin-like modifier (SUMO), thioredoxin (Trx), and NusA tags increased the expression in the range of 90-140xa0mg/L, where >90xa0% of the fusion protein was obtained in soluble form. The fed-batch fermentation of SUMO-tagged hIL-7 protein was optimized at bioreactor level, where a high volumetric product concentration of 2.65xa0g/L was achieved by controlling the plasmid segregation instability using high antibiotic concentration. The specific product yield (YP/X) and volumetric product concentration were 1.38 and 2.55-fold higher compared to batch results, respectively. A preparative scale affinity chromatography resulted in a high recovery yield of 50.6xa0mg/L with ∼90xa0% purity. The conformational property of purified recombinant hIL-7 from CD spectroscopy showed a typical helical structure with 31.5xa0% α-helix and 26.43xa0% β-sheet. The biological activity of purified protein was tested using IL-7-dependent murine immature B lymphocyte (2E8) cell line by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide salt (MTT) assay, where it showed a similar biological activity as standard control.