Journal of clinical monitoring and computing

Electromyographic activation reveals cortical and sub-cortical dissociation during emergence from general anesthesia.

PMID 27444893


During emergence from anesthesia patients regain their muscle tone (EMG). In a typical population of surgical patients the actual volatile gas anesthetic concentrations in the brain (CeMAC) at which EMG activation occurs remains unknown, as is whether EMG activation at higher CeMACs is correlated with subsequent severe pain, or with cortical activation. Electroencephalographic (EEG) and EMG activity was recorded from the forehead of 273 patients emerging from general anesthesia following surgery. We determined CeMAC at time of EMG activation and at return of consciousness. Pain was assessed immediately after return of consciousness using an 11 point numerical rating scale. The onset of EMG activation during emergence was associated with neither discernible muscle movement nor with the presence of exogenous stimulation in half the patients. EMG activation could be modelled as two distinct processes; termed high- and low-CeMAC (occurring higher or lower than 0.07 CeMAC). Low-CeMAC activation was typically associated with simultaneous EMG activation and consciousness, and the presence of a laryngeal mask. In contrast, high-CeMAC EMG activation occurred independently of return of consciousness, and was not associated with severe post-operative pain, but was more common in the presence of an endotracheal tube. Patients emerging from general anesthesia with an endotracheal tube in place are more likely to have an EMG activation at higher CeMAC concentrations. These activations are not associated with subsequent high-pain, nor with cortical arousal, as evidenced by continuing delta waves in the EEG. Conversely, patients emerging from general anesthesia with a laryngeal mask demonstrate marked neural inertia-EMG activation occurs at a low CeMAC, and is closely temporally associated with return of consciousness.