EMAIL THIS PAGE TO A FRIEND

Reproduction in domestic animals = Zuchthygiene

Laminin-111 Inhibits Bovine Fertilization but Improves Embryonic Development inxa0vitro, and Receptor Integrin-β1 is Involved in Sperm-Oocyte Binding.


PMID 27491353

Abstract

This study detected the distribution of laminin during embryonic formation by immunofluorescence. To determine the possible function of laminin on developmental ability of inxa0vitro fertilized embryos, the presumptive zygotes were divided and transferred to CR1aa medium supplemented with different concentrations (0xa0μg/ml, 5xa0μg/ml, 10xa0μg/ml and 20xa0μg/ml) of laminin. To explore the association with sperm-oocyte fusion, oocytes and/or sperm were pre-incubated with laminin or anti-β1 antibody before insemination. Laminin was absent in mature oocytes and could be detected first at the 8-cell stage and then displayed an increasing tendency. Adding 10xa0μg/ml laminin to the culture medium improved embryonic development including cleavage rate, blastocyst rate, total cell numbers in the blastocyst and cell numbers in the inner cell mass. Laminin inhibited sperm-oocyte fusion when incubated with oocytes and/or sperm before inxa0vitro fertilization, and only integrin-β1 of sperm was involved in sperm-oocyte binding. Inhibition may be caused by blocking β1, but why laminin inhibits fertilization is still unknown. The results suggest that laminin plays an important role during embryonic formation and has a negative function in sperm-oocyte fusion, but improves embryonic development. However, only integrin-β1 is involved in sperm-oocyte binding.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

46344
Phenol solution, 100 μg/mL in acetonitrile, PESTANAL®, analytical standard
C6H6O