Interleukin-6 expression contributes to lapatinib resistance through maintenance of stemness property in HER2-positive breast cancer cells.

PMID 27694691


Lapatinib is an inhibitor of human epidermal growth factor receptor 2 (HER2), which is overexpressed in 20-25% of breast cancers. Clinically, lapatinib has shown promising benefits for HER2-positive breast cancer patients; however, patients eventually acquire resistance, limiting its long-term use. In a previous study, we found that interleukin-6 (IL-6) production was increased in acquired lapatinib-resistant HER2-positive breast cancer cells. In the present study, we confirmed that lapatinib-resistant cells had elevated IL-6 expression and also maintained both stemness population and property. The increase in IL-6 was required for stemness property maintenance, which was mediated primarily through the activation of signal transducer and activator of transcription 3 (STAT3). Blocking IL-6 activity reduced spheroid formation, cell viability and subsequently overcame lapatinib resistance, whereas stimulation of IL-6 rendered parental cells more resistant to lapatinib-induced cytotoxicity. These results point to a novel mechanism underlying lapatinib resistance and provide a potential strategy to overcome resistance via IL-6 inhibition.