The Journal of biological chemistry

A novel 58-kDa protein associates with the Golgi apparatus and microtubules.

PMID 2777777


With the aim of identifying proteins involved in linking microtubules to other cytoplasmic structures, microtubule-binding proteins were isolated from rat liver extracts by a taxol-dependent procedure. The major non-tubulin component, a 58-kDa protein (designated 58K), was purified to homogeneity by gel filtration chromatography. To aid further characterization of 58K, purified preparations of the protein were used as immunogen for the production of monoclonal antibodies. Five different monoclonals were obtained, and each of these reacted on immunoblots of liver homogenates with a single band that comigrated with 58K. Based on the results of immunochemical, peptide mapping, and microsequencing experiments, 58K was found to be unrelated structurally to similarly sized cytoskeleton-associated proteins, such as tubulin, tau, vimentin, or keratin, and to represent a new protein species. Several in vitro properties of 58K were found to be characteristic of microtubule-associated proteins. For instance, 58K cosedimented quantitatively with microtubules out of liver extracts, stimulated polymerization of tubulin, and bound to microtubules in a saturable manner. In contrast to traditional microtubule-associated proteins, however, 58K was not found to be distributed uniformly along microtubules in cells. Immunofluorescence microscopy of cultured hepatoma cells revealed, instead, that 58K is associated principally with the Golgi apparatus. Moreover, Golgi membranes isolated from rat liver were observed by immunoblotting to contain significant levels of 58K, which, upon subfractionation of the membranes, partitioned as if it were a peripheral membrane protein exposed to the cytoplasmic side of the Golgi. These collective results have been evaluated in terms of earlier evidence that the intracellular position and structural integrity of the Golgi relies on the presence and organization of microtubules. In that context, the observations reported here suggest that the in vivo function of 58K is to provide an anchorage site for microtubules on the outer surface of the Golgi.