EMAIL THIS PAGE TO A FRIEND

Nature chemistry

Mass spectrometry captures off-target drug binding and provides mechanistic insights into the human metalloprotease ZMPSTE24.


PMID 27874871

Abstract

Off-target binding of hydrophobic drugs can lead to unwanted side effects, either through specific or non-specific binding to unintended membrane protein targets. However, distinguishing the binding of drugs to membrane proteins from that of detergents, lipids and cofactors is challenging. Here, we use high-resolution mass spectrometry to study the effects of HIV protease inhibitors on the human zinc metalloprotease ZMPSTE24. This intramembrane protease plays a major role in converting prelamin A to mature lamin A. We monitored the proteolysis of farnesylated prelamin A peptide by ZMPSTE24 and unexpectedly found retention of the C-terminal peptide product with the enzyme. We also resolved binding of zinc, lipids and HIV protease inhibitors and showed that drug binding blocked prelamin A peptide cleavage and conferred stability to ZMPSTE24. Our results not only have relevance for the progeria-like side effects of certain HIV protease inhibitor drugs, but also highlight new approaches for documenting off-target drug binding.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

SML0685 Amprenavir, ≥98% (HPLC)
C25H35N3O6S
SML0937
Darunavir, ≥98% (HPLC)
C27H37N3O7S