Biophysical journal

Tb3+ and Ca2+ binding to phosphatidylcholine. A study comparing data from optical, NMR, and infrared spectroscopies.

PMID 2790138


The paramagnetic and luminescent lanthanides are unique probes of cation-phospholipid interactions. Their spectroscopic properties provide the means to characterize and monitor complexes formed with lipids in ways not possible with biochemically more interesting cations, such as Ca2+. In this work, Tb3+-phosphatidylcholine complexes are described using the luminescence properties of Tb3+, the effect of its paramagnetism on the 31P NMR and 13C NMR spectra of the lipid, and changes in the infrared spectrum of the lipid induced by the cation. There are two Tb3+-phosphatidylcholine complexes with very different coordination environments, as evidenced by changes in the optical excitation spectrum of the lanthanide. The NMR experiments indicate that the two complexes differ in the number of phosphate groups directly coordinating Tb3+. Tb3+ binding induces changes in the phosphodiester infrared bands that are most consistent with bidentate chelation of Tb3+ by each phosphate, whereas Ca2+-induced changes are more consistent with monodentate coordination. The significance of this discrepancy is discussed.