EMAIL THIS PAGE TO A FRIEND

BMC biotechnology

Expression of a fungal manganese peroxidase in Escherichia coli: a comparison between the soluble and refolded enzymes.


PMID 27908283

Abstract

Manganese peroxidase (MnP) from Irpex lacteus F17 has been shown to have a strong ability to degrade recalcitrant aromatic pollutants. In this study, a recombinant MnP from I. lacteus F17 was expressed in Escherichia coli Rosetta (DE3) in the form of inclusion bodies, which were refolded to achieve an active enzyme. Further, we optimized the in vitro refolding conditions to increase the recovery yield of the recombinant protein production. Additionally, we attempted to express recombinant MnP in soluble form in E. coli, and compared its activity with that of refolded MnP. Refolded MnP was obtained by optimizing the in vitro refolding conditions, and soluble MnP was produced in the presence of four additives, TritonX-100, Tween-80, ethanol, and glycerol, through incubation at 16 °C. Hemin and Ca2+ supplementation was crucial for the activity of the recombinant protein. Compared with refolded MnP, soluble MnP showed low catalytic efficiencies for Mn2+ and H2O2 substrates, but the two enzymes had an identical, broad range substrate specificity, and the ability to decolorize azo dyes. Furthermore, their enzymatic spectral characteristics were analysed by circular dichroism (CD), electronic absorption spectrum (UV-VIS), fluorescence and Raman spectra, indicating the differences in protein conformation between soluble and refolded MnP. Subsequently, size exclusion chromatography (SEC) and dynamic light scattering (DLS) analyses demonstrated that refolded MnP was a good monomer in solution, while soluble MnP predominantly existed in the oligomeric status. Our results showed that two forms of recombinant MnP could be expressed in E. coli by varying the culture conditions during protein expression.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

274623
Dess-Martin periodinane, 97%
C13H13IO8