EMAIL THIS PAGE TO A FRIEND

Biochemical and biophysical research communications

MicroRNA-144-3p suppresses gastric cancer progression by inhibiting epithelial-to-mesenchymal transition through targeting PBX3.


PMID 28111340

Abstract

MicroRNAs are aberrantly expressed in a wide variety of human cancers. The present study aims to elucidate the effects and molecular mechanisms of miR-144-3p that underlie gastric cancer (GC) development. It was observed that miR-144-3p expression was significantly decreased in GC tissues compared to that in paired non-tumor tissues; moreover, its expression was lower in tissues of advanced stage and larger tumor size, as well as in lymph node metastasis tissues compared to that in control groups. miR-144-3p expression was associated with depth of invasion (P = 0.030), tumor size (P = 0.047), lymph node metastasis (P = 0.047), and TNM stage (P = 0.048). Additionally, miR-144-3p significantly inhibited proliferation, migration, and invasion in GC cells. It also reduced F-actin expression and suppressed epithelial-to-mesenchymal transition (EMT) in GC cells. Furthermore, pre-leukemia transcription factor 3 (PBX3) was a direct target gene of miR-144-3p. PBX3 was overexpressed in GC tissues and promoted EMT in GC cells. The effects of miR-144-3p mimics or inhibitors on cell migration, invasion, and proliferation were reversed by PBX3 overexpression or downregulation respectively. These results suggest that miR-144-3p suppresses GC progression by inhibiting EMT through targeting PBX3.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

EHU083631 MISSION® esiRNA, esiRNA human PBX3 (esiRNA1)