Journal of cellular biochemistry

Extracellular Signal-Regulated Protein Kinase, c-Jun N-Terminal Protein Kinase, and Calcineurin Regulate Transient Receptor Potential M3 (TRPM3) Induced Activation of AP-1.

PMID 28112420


Stimulation of transient receptor potential M3 (TRPM3) cation channels with pregnenolone sulfate induces an influx of Ca(2+) ions into the cells and a rise in the intracellular Ca(2+) concentration, leading to the activation of the activator protein-1 (AP-1) transcription factor. Here, we show that expression of a constitutively active mutant of the Ca(2+) /calmodulin-dependent protein phosphatase calcineurin attenuated pregnenolone sulfate-induced AP-1 activation in TRPM3-expressing cells. Likewise, expression of the regulatory B subunit of calcineurin reduced AP-1 activity in the cells following stimulation of TRPM3 channels. MAP kinase phosphatase-1 has been shown to attenuate TRPM3-mediated AP-1 activation. Here, we show that pregnenolone sulfate-induced stimulation of TRPM3 triggers the phosphorylation and activation of the MAP kinase extracellular signal-regulated protein kinase (ERK1/2). Pharmacological and genetic experiments revealed that stimulation of ERK1/2 is essential for the activation of AP-1 in cells expressing stimulated TRPM3 channels. ERK1/2 is required for the activation of the transcription factor c-Jun, a key component of the AP-1 transcription factor, and regulates c-Fos promoter activity. In addition, we identified c-Jun N-terminal protein kinase (JNK1/2) as a second signal transducer of activated TRPM3 channels. Together, the data show that calcineurin and the protein kinases ERK1/2 and JNK1/2 are important regulators within the signaling cascade connecting TRPM3 channel stimulation with increased AP-1-regulated transcription. J. Cell. Biochem. 118: 2409-2419, 2017. © 2017 Wiley Periodicals, Inc.