Molecular carcinogenesis

Transcription factor AP-2β suppresses cervical cancer cell proliferation by promoting the degradation of its interaction partner β-catenin.

PMID 28277615


Transcription factor AP-2β mediates the transcription of a number of genes implicated in mammalian development, cell proliferation, and carcinogenesis. Although the expression pattern of AP-2β has been analyzed in cervical cancer cell lines, the functions and molecular mechanism of AP-2β are unknown. Here, we found that AP-2β significantly inhibits TCF/LEF reporter activity. Moreover, AP-2β and β-catenin interact both in vitro through GST pull-down assays and in vivo by co-immunoprecipitation. We further identified the interaction regions to the DNA-binding domain of AP-2β and the 1-9 Armadillo repeats of β-catenin. Moreover, AP-2β binds with β-TrCP and promotes the degradation of endogenous β-catenin via the proteasomal degradation pathway. Immunohistochemistry analysis revealed a negative correlation between the two proteins in cervical cancer tissues and cell lines. Finally, functional analysis showed that AP-2β suppresses cervical cancer cell growth in vitro and in vivo by inhibiting the expression of Wnt downstream genes. Taken together, these findings demonstrated that AP-2β functions as a novel inhibitor of the Wnt/β-catenin signaling pathway in cervical cancer.