Effect of icariin in combination with daily sildenafil on penile atrophy and erectile dysfunction in a rat model of bilateral cavernous nerves injury.

PMID 28296277


The commonly utilized phosphodiesterase type 5 inhibitors do not lead to satisfactory penile erection after radical prostatectomy mainly because of insufficient nitric oxide drive from the damaged cavernous nerves. The aim of this study was to assess the efficacy and mechanisms of icariin in combination with daily sildenafil on neurogenic erectile dysfunction and penile atrophy in a rat model of bilateral cavernous nerves injury. Sixty male Sprague-Dawley rats injected with 5-ethynyl-2-deoxyuridine (50 mg/kg) at postnatal day 1 for the purpose of tracking endogenous stem cells in penis. Forty-eight rats of bilateral cavernous nerves injury were randomized equally into gavage feeding of vehicle, sildenafil (10 mg/kg), icariin (1.5 mg/kg) and sildenafil + icariin, respectively. Twelve sham-operated rats served as control. The intracavernous pressure and mean arterial pressure was measured and mid-penile cross sections were histologically examined 5 weeks after surgery. Western blotting of cavernous tissue protein was also performed. Animals treated with sildenafil + icariin had significantly higher mean intracavernous pressure/mean arterial pressure ratio relative to other rats with bilateral cavernous nerves injury (p < 0.05). The circumference and mean cross-sectional area of the paired corpus cavernosum were effectively preserved in the sildenafil + icariin. Treatment with sildenafil + icariin significantly increased the cavernous cyclic guanosine monophosphate concentration compared with the icariin group (p < 0.05). In addition, the numbers of neuronal nitric oxide synthase-positive nerves and 5-ethynyl-2-deoxyuridine-positive cells co-expressing S100 in the icariin-treated groups were greater compared with the bilateral cavernous nerves injury control group (p < 0.05). These data suggest that the combined use of icariin and daily sildenafil holds promise as a potential therapy for neurogenic erectile dysfunction in the future. The underlying mechanisms appears to involve two aspects: (i) icariin promotes differentiation of endogenous stem cells to Schwann cells, which help to repair the damaged neural pathway for erection; (ii) on this basis, sildenafil can further improve penile engorgement through the cyclic guanosine monophosphate-dependent smooth muscle relaxation.