EMAIL THIS PAGE TO A FRIEND

Stem cells translational medicine

Chitosan Wound Dressings Incorporating Exosomes Derived from MicroRNA-126-Overexpressing Synovium Mesenchymal Stem Cells Provide Sustained Release of Exosomes and Heal Full-Thickness Skin Defects in a Diabetic Rat Model.


PMID 28297576

Abstract

There is a need to find better strategies to promote wound healing, especially of chronic wounds, which remain a challenge. We found that synovium mesenchymal stem cells (SMSCs) have the ability to strongly promote cell proliferation of fibroblasts; however, they are ineffective at promoting angiogenesis. Using gene overexpression technology, we overexpressed microRNA-126-3p (miR-126-3p) and transferred the angiogenic ability of endothelial progenitor cells to SMSCs, promoting angiogenesis. We tested a therapeutic strategy involving controlled-release exosomes derived from miR-126-3p-overexpressing SMSCs combined with chitosan. Our in vitro results showed that exosomes derived from miR-126-3p-overexpressing SMSCs (SMSC-126-Exos) stimulated the proliferation of human dermal fibroblasts and human dermal microvascular endothelial cells (HMEC-1) in a dose-dependent manner. Furthermore, SMSC-126-Exos also promoted migration and tube formation of HMEC-1. Testing this system in a diabetic rat model, we found that this approach resulted in accelerated re-epithelialization, activated angiogenesis, and promotion of collagen maturity in vivo. These data provide the first evidence of the potential of SMSC-126-Exos in treating cutaneous wounds and indicate that modifying the cells-for example, by gene overexpression-and using the exosomes derived from these modified cells provides a potential drug delivery system and could have infinite possibilities for future therapy. Stem Cells Translational Medicine 2017;6:736-747.