EMAIL THIS PAGE TO A FRIEND

Journal of proteome research

Gut Microbiota Modulation Attenuated the Hypolipidemic Effect of Simvastatin in High-Fat/Cholesterol-Diet Fed Mice.


PMID 28378586

Abstract

The hypolipidemic effect of simvastatin varies greatly among patients. In the current study, we investigated the gut microbial-involved mechanisms underlying the different responses to simvastatin. Male C57BL/6J mice were divided into control (Con), high-fat/cholesterol diet (HFD), antibiotic (AB), simvastatin (SV) and antibiotic_simvastatin (AB_SV) groups, respectively. At the end of the experiment, serum samples were collected for lipids and metabolomic analysis, and liver tissues for histology, gene and protein expression analysis. The results showed that antibiotic treatment not only altered the composition of gut microbiota, but attenuated the hypolipidemic effect of SV. A total of 16 differential metabolites between SV and HFD groups were identified with metabolomics, while most of them showed no statistical differences between AB_SV and HFD groups, and similar changes were also observed in bile acids profile. The expressions of several genes and proteins involved in regulating bile acids synthesis were significantly reversed by SV, but not AB_SV in HFD fed mice. In summary, our current study indicated that the hypolipidemic effect of SV was correlated with the composition of the gut microbiota, and the attenuated hypolipidemic effect of SV by gut microbiota modulation was associated with a suppression of bile acids synthesis from cholesterol.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

PHR1796
Imipenem, Pharmaceutical Secondary Standard; Certified Reference Material
C12H17N3O4S · H2O