EMAIL THIS PAGE TO A FRIEND

Epilepsy research

Sporadic periventricular nodular heterotopia: Classification, phenotype and correlation with Filamin A mutations.


PMID 28411558

Abstract

The purpose of this study was to better delineate the clinical spectrum of periventricular nodular heterotopia (PNH) in a large patient population after long term follow up. Specifically, this study aimed to relate PNH subtypes to clinical or epileptic outcomes, epileptic discharges and underlying Filamin A (FLNA) mutations by analyzing anatomical features. The study included 100 patients with radiologically confirmed nodular heterotopia. Patients' FLNA gene sequences and medical records were analyzed. Two-sided Chi-square test and Fisher's exact t-test were used to assess associations between the distribution of PNHs and specific clinical features. Based on imaging data, patients were subdivided into three groups: (a) classical (bilateral frontal and body, n=41 patients), (b) bilateral asymmetrical or posterior (n=16) and (c) unilateral heterotopia (n=43). Most patients with classical heterotopia were females (P=0.033) and were likely to have arachnoid cysts (P=0.025) and cardiac abnormalities (P=0.041), but were mostly seizure-free. Additionally, hippocampal abnormalities (P=0.022), neurological deficits (P=0.028) and cerebellar abnormalities (P=0.005) were more common in patients with bilateral asymmetrical heterotopia. Patients with unilateral heterotopia were prone to develop refractory epilepsy (P=0.041). FLNA mutations were identified in 8 patients. Each group's distinctive genetic mutations, epileptic discharge patterns and overall clinical outcomes confirm that the proposed classification system is reliable. These findings could not only be an indicator of a more severe morphological and clinical phenotype, but could also have clinical implications with respect to the epilepsy management and optimization of therapeutic options.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

719536
3,3′-Diiodo-L-thyronine (T2), 98% (CP)
C15H13I2NO4