ACS nano

Superstretchable Nacre-Mimetic Graphene/Poly(vinyl alcohol) Composite Film Based on Interfacial Architectural Engineering.

PMID 28445032


Through designing hierarchical structures, particularly optimizing the chemical and architectural interactions at its inorganic/organic interface, nacre has achieved an excellent combination of contradictory mechanical properties such as strength and toughness, which is highly demanded yet difficult to achieve by most synthetic materials. Most techniques applied to develop nacre-mimetic composites have been focused on mimicking the "brick-and-mortar" structure, but the interfacial architectural features, especially the asperities and mineral bridges of "bricks", have been rarely concerned, which are of equal importance for enhancing mechanical properties of nacre. Here, we used a modified bidirectional freezing method followed by uniaxial pressing and chemical reduction to assemble a nacre-mimetic graphene/poly(vinyl alcohol) composite film, with both asperities and bridges introduced in addition to the lamellar layers to mimic the interfacial architectural interactions found in nacre. As such, we have developed a composite film that is not only strong (up to ∼150.9 MPa), but also tough (up to ∼8.50 MJ/m