Oncology letters

Prodelphinidins isolated from Chinese bayberry leaves induces apoptosis via the p53-dependent signaling pathways in OVCAR-3 human ovarian cancer cells.

PMID 28529565


Chinese bayberry leaves are rich in prodelphinidins. Since the isolation and purification of prodelphinidins is difficult, the association between the degree of prodelphinidin polymerization and their anti-carcinogenic activity remains ambiguous. The cytotoxic and apoptotic activities of prodelphinidin Chinese bayberry leaf extracts (PCBLs), oligomeric proanthocyanidins (OPAs) and polymeric proanthocyanidins (PPAs), isolated by normal-phase preparative high-performance liquid chromatography were investigated in OVCAR-3 human ovarian cancer cells. The PCBLs, OPAs and PPAs inhibited cancer cell growth and induced apoptosis via the caspase-dependent pathway. Apoptosis was triggered through the intrinsic pathway by upregulating the expression of several B-cell lymphoma-2 (Bcl-2) family proapoptotic proteins, including p53-upregulated modulator of apoptosis (PUMA), Bcl-2-associated X protein and Bcl-2-associated agonist of cell death, and by downregulating the antiapoptotic protein Bcl-extra large. Apoptosis was also triggered through the extrinsic pathway via the upregulation of death receptor 5 (DR5) and Fas expression. In addition, OPAs and PPAs induced caspase-dependent apoptosis at least partially through the inhibition of the protein kinase B signaling pathway. The knockdown of p53 by specific small interfering RNA resulted in the depletion of p53, and inhibited the OPA and PPA treatment-induced increases in p53, which led to a decrease in the expression of p21, DR5, Fas, PUMA and phosphatase and tensin homolog proteins. These observations demonstrate that p53 is a mediator of OPA and PPA-induced apoptosis in OVCAR-3 cells. The PPAs exhibited stronger anti-proliferative and pro-apoptotic activities compared with OPAs and PCBLs. These results suggest that PCBLs, OPAs and PPAs may be useful for the treatment of ovarian cancer.