Journal of biochemical toxicology

Tricyclohexyltin hydroxide effects on cationic and substrate activation kinetics of beta-adrenergic-stimulated cardiac Ca2+-ATPase.

PMID 2856074


Previous studies from this laboratory have indicated that tricyclohexyltin hydroxide (Plictran) is a potent inhibitor of both basal- and isoproterenol-stimulated cardiac sarcoplasmic reticulum (SR) Ca2+-ATPase, with an estimated IC-50 of 2.5 X 10(-8) M. The present studies were initiated to evaluate the mechanism of inhibition of Ca2+-ATPase by Plictran. Data on substrate and cationic activation kinetics of Ca2+-ATPase indicated alteration of Vmax and Km by Plictran (1 and 5 X 10(-8) M), suggesting a mixed type of inhibition. The beta-adrenergic agonist isoproterenol increased Vmax of both ATP- and Ca2+-dependent enzyme activities. However, the Km of enzyme was decreased only for Ca2+. Plictran inhibited isoproterenol-stimulated Ca2+-ATPase activity by altering both Vmax and Km of ATP as well as Ca2+-dependent enzyme activities, suggesting that after binding to a single independent site, Plictran inhibits enzyme catalysis by decreasing the affinity of enzyme for ATP as well as for Ca2+. Preincubation of enzyme with 15 microM cAMP or the addition of 2mM ATP to the reaction mixture resulted in slight activation of Plictran-inhibited enzyme. Pretreatment of SR with 5 X 10(-7) M propranolol and 5 X 10(-8) M Plictran resulted in inhibition of basal activity in addition to the loss of stimulated activity. Preincubation of heart SR preparation with 5 X 10(-5) M coenzyme A in combination with 5 X 10(-8) M Plictran partly restored the beta-adrenergic stimulation. These results suggest that some critical sites common to both basal- and beta-adrenergic-stimulated Ca2+-ATPase are sensitive to binding by Plictran, and the resultant conformational change may lead to inhibition of beta-adrenergic stimulation.