EMAIL THIS PAGE TO A FRIEND

The Journal of steroid biochemistry and molecular biology

Inhibition of 17beta-hydroxysteroid dehydrogenase type 7 modulates breast cancer protein profile and enhances apoptosis by down-regulating GRP78.


PMID 28645527

Abstract

17beta-hydroxysteroid dehydrogenase type 7 (17β-HSD7) promotes breast cancer cell growth via dual-catalytic activity by modulating estradiol and DHT. Here, we clarified the expression pattern of 17β-HSD7 in postmenopausal luminal A type breast cancer with The Cancer Genome Atlas (TCGA) cohort. The impact of 17β-HSD7 inhibition on the proteome of MCF-7 cells was investigated and on cell apoptosis was revealed. MCF-7 cells were treated with an efficient inhibitor of 17β-HSD7 (INH7) or with vehicle, and a differential proteomics study was performed using two-dimensional (2D) gel electrophoresis followed by mass spectrometry and ingenuity pathway analysis (IPA). Cell apoptosis was analyzed by flow cytometry, followed by reverse transcription quantitative real-time PCR (RT-qPCR) and Western blot to investigate the expression of apoptosis-related genes. Our data showed 17β-HSD7 is amplified in primary and progressive breast cancer, inhibition of 17β-HSD7 in MCF-7 cells modulated 104 proteins primarily involved in cell death/survival, cell growth and DNA processing. The expression of 78kDa glucose-regulated protein (GRP78) and anti-apoptosis factor Bcl-2 were significantly suppressed via 17β-HSD7 inhibition with INH7, consequently induced MCF-7 cell apoptosis. However, INH7 treatment of T47D, another widely used epithelial ER+ breast cancer cell line, led to an up-regulation of GRP78 expression, resulting in a limited increase in apoptosis. These results suggest cell-specific effects of INH7 in the breast cancer, which is interesting for further study. An combinatory effect on apoptosis by INH7 and Letrozole (aromatase inhibitor) was further demonstrated in MCF-7. Down-regulation of GRP78 via 17β-HSD7 inhibition enhances cell apoptosis in response to Letrozole. This study highlights GRP78 as a key regulator related to 17β-HSD7 inhibition and effect. Taken together, results from the present study suggest a hypothesis that inhibition of 17β-HSD7 would be a complementary strategy to Letrozole by suppression of GRP78 in ER+ breast cancer. However, from a research perspective, further studies have to be carried out with more breast cancer cell lines as well as in vivo model to assess the efficacy of inhibitor combination.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

EHU109691 MISSION® esiRNA, esiRNA human HSPA5 (esiRNA1)