EMAIL THIS PAGE TO A FRIEND

Phytomedicine : international journal of phytotherapy and phytopharmacology

Anti-adipogenesis mechanism of pterostilbene through the activation of heme oxygenase-1 in 3T3-L1 cells.


PMID 28887923

Abstract

Pterostilbene is a stilbenoid and major compound and has diverse biological activities, such as antioxidant, anti-cancer, and anti-inflammatory. However, it has not been shown whether pterostilbene affects the mitotic clonal expansion during adipogenesis in 3T3-L1 cells. In the present study, we aimed to demonstrate the detailed mechanism of pterostilbene on anti-adipogenesis in 3T3-L1 cells. Preadipocytes were converted to adipocytes through treatment with MDI (IBMX; 3-isobutyl-1-methylxanthine, DEX; dexamethasone, insulin) in 3T3-L1 cells. Oil Red O staining was performed to measure intracellular lipid accumulation. Western blot analysis was conducted to analyze protein expressions. Our results showed that pterostilbene decreased the lipid accumulation compared to MDI-induced differentiation, using Oil Red O staining. Next, we found that pterostilbene suppressed the expression of C/EBPα, PPARγ, and aP2 as well as the mitotic clonal expansion-associated proteins CHOP10 and C/EBPβ, by western blot analysis. Our results indicated that pterostilbene may repress adipocyte differentiation through the activation of HO-1 expression prior to entering into the mitotic clonal expansion in 3T3-L1 cells. RNA interference was used to determine whether HO-1 acts as a regulator of CHOP10. Our results revealed that pterostilbene induced HO-1 expression which acts as a regulator of CHOP10. Together, we demonstrated that pterostilbene suppresses the initiation of mitotic clonal expansion via up-regulation of HO-1 expression during adipocyte differentiation of 3T3-L1 cells.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

P1499
Pterostilbene, ≥97% (HPLC), solid
C16H16O3