Journal of photochemistry and photobiology. B, Biology

Testicular atrophy and reproductive quiescence in photorefractory and scotosensitive quail: Involvement of hypothalamic deep brain photoreceptors and GnRH-GnIH system.

PMID 28923598


Birds time their daily and seasonal activities in synchronization with circadian and annual periodicities in the environment, which is mainly provided by changes in photoperiod/day length conditions. Photoperiod appears to act at the level of eye, pineal and encephalic/deep brain photoperception and thus entrain the hypothalamic clock as well as reproductive circuitry in different avian species. In this article our focus of study is to elucidate out the underlying molecular mechanism of modulation of the hypothalamic reproductive circuitry following the photoperception through the hypothalamic photoreceptor cells and the subsequent alteration in the reproductive responses in quail, kept under different simulated photoperiodic conditions. Present study investigated the different simulated photoperiodic conditions induced hypothalamic DBP-GnRH-GnIH system mediated translation of photoperiodic information and subsequent exhibition of differential photosexual responses (scoto-/photo-sensitivity and refractoriness) in Japanese quail, Coturnix coturnix japonica. Paired testes weight and paired testicular volume increased 15.9 and 22.6-fold respectively in scotorefractory quail compare to that of scotosensitive phase and 12.8 and 24.3-fold in photosensitive quail compare to that of photorefractory phase. The pineal/eye melatonin (through melatonin receptor subtype Mel

Related Materials

Product #



Molecular Formula

Add to Cart

D0426 SIGMAFAST DAB with Metal Enhancer, tablet