EMAIL THIS PAGE TO A FRIEND

Bone

Effects of single or combination therapy of teriparatide and anti-RANKL monoclonal antibody on bone defect regeneration in mice.


PMID 28978416

Abstract

The purpose of this study is to investigate the effects of a single or combination therapy of teriparatide (TPTD) and anti-RANKL Ab (anti-murine receptor activator of nuclear factor κB ligand monoclonal antibody) on the regeneration of both cancellous and cortical bone. Nine-week-old mice underwent bone defect surgery on the left femoral metaphysis (cancellous-bone healing model) and right femoral mid-diaphysis (cortical-bone healing model). After surgery, the mice were assigned to 1 of 4 groups to receive 1) saline (5 times a week; CNT group), 2) TPTD (40μg/kg 5 times a week; TPTD group), 3) anti-RANKL Ab (5mg/kg once; Ab group), or 4) a combination of TPTD and anti-RANKL Ab (COMB group). The following analyses were performed: Time-course microstructural analysis of healing in both cancellous and cortical bone in the bone defect, the volumetric bone mineral density of the tibia with micro-computed tomography, histological, histomorphometrical, and biomechanical analysis of regenerated bone. Regeneration of cancellous bone volume in the COMB group was the highest among the 4 groups, and this combined administration prompted medullary callus formation in the early phase of bone regeneration. On the other hand, regeneration of cortical bone volume in the COMB group was significantly higher than in the Ab group and was almost same as in the TPTD group. Histological analysis showed remaining woven bones, cartilage matrix, and immature lamellar bone in the COMB and Ab groups. However, biomechanical analysis showed that hardness and Young's modulus of regenerated cortical bone in the COMB group was not lower than in both the CNT and TPTD groups. Volumetric bone mineral density in the tibia was significantly increased in the COMB group compared with the other 3 groups. In the early phase of bone regeneration, the combination of TPTD and anti-RANKL Ab accelerates regeneration of cancellous bone in bone defects and increases cancellous bone mass in the tibia more effectively than either agent does individually, but these additive effects are not observed in the regeneration of cortical bone.