The American journal of Chinese medicine

Pueraria lobate Inhibits RANKL-Mediated Osteoclastogenesis Via Downregulation of CREB/PGC1β/c-Fos/NFATc1 Signaling.

PMID 29121799


Puerariae radix, the dried root of Pueraria lobate Ohwi, is known to prevent bone loss in ovariectomized mice; however, the precise molecular mechanisms are not understood. In this study, we investigated the effects and underlying mechanisms of action of Puerariae radix extract (PRE) on receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis. PRE dose-dependently inhibited osteoclast differentiation and formation, decreased the bone-resorbing activity of osteoclasts, and downregulated the expression of osteoclast differentiation marker genes. The expression of osteoclastogenic factors produced by PRE-treated osteoblasts such as RANKL, macrophage colony-stimulating factor (M-CSF), and osteoprotegerin (OPG) was comparable to that of untreated (control) cells. However, the formation of osteoclasts via bone marrow cell and calvaria-derived osteoblast co-cultures was suppressed by PRE treatment. Therefore, the inhibitory effects of PRE on osteoclastogenesis clearly targeted osteoclasts, but not osteoblasts. PRE treatment considerably reduced RANKL-induced mitogen-activated protein kinases (MAPKs) activity, especially c-Jun N-terminal kinase, in osteoclast precursor cells. In addition, PRE markedly suppressed cAMP response element-binding protein (CREB) activation and the induction of peroxisome proliferator-activated receptor gamma coactivator 1β (PGC1β), which stimulate osteoclastogenesis - an effect that was not observed for puerarin and 17-β estradiol. Finally, PRE treatment significantly repressed the expression of c-Fos and the nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), which is a master transcription factor for osteoclastogenesis in vitro and in vivo. Overall, these results strongly suggest that PRE is an effective inhibitor of RANKL-induced osteoclastogenesis and may be a potent therapeutic agent for bone-related diseases such as osteoporosis, rheumatoid arthritis, and periodontitis.