PloS one

Cilostazol attenuates intimal hyperplasia in a mouse model of chronic kidney disease.

PMID 29206849


Intimal hyperplasia (IH) is a common cause of vasculopathy due to direct endothelial damage (such as post-coronary revascularization) or indirect injury (such as chronic kidney disease, or CKD). Although the attenuation of coronary revascularization-induced IH (direct-vascular-injury-induced IH) by cilostazol, a phosphodiesterase III inhibitor, has been demonstrated, our understanding of the effect on CKD-induced IH (indirect-vascular-injury-induced IH) is limited. Herein, we tested if cilostazol attenuated CKD-induced IH in a mouse model of ischemic-reperfusion injury with unilateral nephrectomy (Chr I/R), a normotensive non-proteinuria CKD model. Cilostazol (50 mg/kg/day) or placebo was orally administered once daily from 1-week post-nephrectomy. At 20 weeks, cilostazol significantly attenuated aortic IH as demonstrated by a 34% reduction in the total intima area with 50% and 47% decreases in the ratios of tunica intima area/tunica media area and tunica intima area/(tunica intima + tunica media area), respectively. The diameters of aorta and renal function were unchanged by cilostazol. Interestingly, cilostazol decreased miR-221, but enhanced miR-143 and miR-145 in either in vitro or aortic tissue, as well as attenuated several pro-inflammatory mediators, including asymmetrical dimethylarginine, high-sensitivity C-reactive protein, vascular endothelial growth factor in aorta and serum pro-inflammatory cytokines (IL-6 and TNF-α). We demonstrated a proof of concept of the effectiveness of cilostazol in attenuating IH in a Chr I/R mouse model, a CKD model with predominantly indirect-vascular-injury-induced IH. These considerations warrant further investigation to develop a new primary prevention strategy for CKD-related IH.

Related Materials

Product #



Molecular Formula

Add to Cart

NG,NG-Dimethylarginine dihydrochloride
C8H18N4O2 · 2HCl