EMAIL THIS PAGE TO A FRIEND

Cell death & disease

Carnitine palmitoyltransferase gene upregulation by linoleic acid induces CD4+ T cell apoptosis promoting HCC development.


PMID 29795111

Abstract

Hepatocellular carcinoma (HCC) is a common cause of cancer-related death worldwide. As obesity and diabetes become more prevalent, the contribution of non-alcoholic fatty liver disease (NAFLD) to HCC is rising. Recently, we reported intrahepatic CD4+ T cells are critical for anti-tumor surveillance in NAFLD. Lipid accumulation in the liver is the hallmark of NAFLD, which may perturb T cell function. We sought to investigate how the lipid-rich liver environment influences CD4+ T cells by focusing on carnitine palmitoyltransferase (CPT) family members, which control the mitochondrial β-oxidation of fatty acids and act as key molecules in lipid catabolism. Linoleic acid (C18:2) co-localized within the mitochondria along with a corresponding increase in CPT gene upregulation. This CPT upregulation can be recapitulated by feeding mice with a high-C18:2 diet or the NAFLD promoting methionine-choline-deficient (MCD) diet. Using an agonist and antagonist, the induction of CPT genes was found to be mediated by peroxisome proliferator-activated receptor alpha (PPAR-α). CPT gene upregulation increased mitochondrial reactive oxygen species (ROS) and led to cell apoptosis. In vivo, using liver-specific inducible MYC transgenic mice fed MCD diet, blocking CPT with the pharmacological inhibitor perhexiline decreased apoptosis of intrahepatic CD4+ T cells and inhibited HCC tumor formation. These results provide useful information for potentially targeting the CPT family to rescue intrahepatic CD4+ T cells and to aid immunotherapy for NAFLD-promoted HCC.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

G5045
GW6471, ≥98% (HPLC)
C35H36F3N3O4