EMAIL THIS PAGE TO A FRIEND

Experimental biology and medicine (Maywood, N.J.)

Low frequency electromagnetic field decreases ischemia-reperfusion injury of human cardiomyocytes and supports their metabolic function.


PMID 29848052

Abstract

Electromagnetic field at extremely low frequencies plays a significant role in the physiological function of human tissues and systems. It is shown that electromagnetic field inhibits production of reactive oxygen species which are involved in heart injury triggered by oxidative stress. We hypothesize that low frequency electromagnetic field protects function of cardiac cells from ischemia-reperfusion injury. Human cardiac myocytes, endothelial cells, and cardiac fibroblast underwent ischemia-reperfusion conditions in the presence or in the absence of low frequency electromagnetic field. LDH and MMP-2 activities (as markers of cell injury), and cell metabolic activity (by fluorescein diacetate staining) were measured to determine the protective role of low frequency electromagnetic field. Our data showed that short courses of low frequency electromagnetic field protect cardiac cells from cellular damage and preserve their metabolic activity during ischemia-reperfusion. This study demonstrates the possibility to use of low frequency electromagnetic field as strategy for the prevention or therapy of ischemia-reperfusion injury. Impact statement In our study, we showed that LF-EMF may be protective for heart during ischemia-reperfusion (I/R). Following is the short description of the main findings: (a) the response to the I/R injury was different for endothelial cells, fibroblasts, and cardiomyocytes; (b) I/R decreases MMP-2 activity in cardiac myocytes and fibroblasts;