EMAIL THIS PAGE TO A FRIEND

Journal of virology

Transduction with Lentiviral Vectors Altered the Expression Profile of Host MicroRNAs.


PMID 29997205

Abstract

RNA interference (RNAi) is widely used in gene knockdown analysis and as a tool to screen host genes involved in viral infection. Owing to the limitations of transducing cells with synthetic small interfering RNAs (siRNAs), lentiviral short hairpin RNA (shRNA) vectors are more widely used. However, we found that stable transduction with lentiviral shRNA vectors inhibited hepatitis C virus (HCV) propagation in human hepatoma cells. We found by microRNA (miRNA) microarray analysis that this inhibition was induced by the alteration of host miRNA expression. In addition to one miRNA (miR-196b-5p) previously reported to be involved in HCV infection, other miRNAs (miR-216a-5p, -216b-5p, 217, and -30b-5p) were found to influence HCV infection in this study. Further studies suggested that this effect was independent of the transcription of shRNAs. The lentiviral vector itself and the integration site of the lentiviral vector might determine the change in miRNA expression. Moreover, the upregulation of JUN contributed to the dysregulation of miR-216a-5p, -216b-5p, and -217 in stably transduced cells. Although the changes in miRNA expression were beneficial for inhibiting HCV infection in our study, this off-target effect should be considered when transduction with lentiviral vectors is performed for other purposes, especially in therapy.IMPORTANCE We found that stable transduction with lentiviral shRNA was able to nonspecifically inhibit HCV infection by the dysregulation of host miRNAs. Previous studies showed that the overexpression of shRNAs oversaturated the host miRNA pathways to inhibit HCV infection. In contrast, the miRNA machinery was not affected in our study. Knockout studies suggested that the nonspecific effect was independent of the transcription of shRNAs. The lentiviral vector itself and the integration sites in the host genome determined the changes in miRNAs. Stable transduction with lentiviral vectors was able to increase the expression of JUN, which in turn upregulated miR-216a-5p, miR-216b-5p, and miR-217. miR-216a-5p and miR-216b-5p might inhibit HCV by suppressing the host autophagic machinery. Our study suggested a novel nonspecific effect of lentiviral vectors, and this side effect should be considered when transduction with lentiviral vectors is performed for other purposes, especially in therapy.