Biochimica et biophysica acta

Spin-labeled amphotericin B: synthesis, characterization, biological and spectroscopic properties.

PMID 3028486


A biologically active spin-labeled derivative of amphotericin B has been synthesized by the nucleophilic addition of amphotericin B to 4-(2-iodoacetamido)-2,2',6,6'-tetramethylpiperadine-N-oxyl in dimethyl-sulphoxide at 40 degrees C. The derivative is a moderately water-soluble compound which displays the same biological activity of the parental compound against the sensitive organism Leishmania mexicana; also, the rates of proton-cation exchange induced by the two compounds in large unilamellar liposomes are indistinguishable. The ESR spectra of spin-labeled amphotericin B in lipid vesicles indicate a high degree of motion, very similar to that encountered for the compound in aqueous solutions at neutral pH and in deoxycholate micelles, and suggest that the structures formed by the antibiotic in membranes are composed by a small number of molecules. In contrast, the spectra of the labeled antibiotic in ethanol, diethyl ether and dimethylformamide indicate restricted motion and exchange interactions, probably resulting from the micellar aggregation induced in these media. Ascorbate at 10 mM is able to reduce completely the nitroxide group of the labeled antibiotic in lipid vesicles in less than 30 s, indicating that an asymmetric disposition of the antibiotic molecules across the membrane is capable of inducing its biological and ionophoric properties. Ni2+ and Cu2+ produce moderate exchange broadening of the ESR signal of spin-labeled amphotericin B in lipid vesicles; the comparison of this phenomenom with the exchange broadening produced by the same ions in the ESR spectrum of 2,2',6,6'-tetramethylpiperidine-N-oxyl in water solution suggests an specific Cu2+-amphotericin B interaction in membranes.

Related Materials

Product #



Molecular Formula

Add to Cart

4-(2-Iodoacetamido)-TEMPO, free radical