EMAIL THIS PAGE TO A FRIEND

Carbohydrate research

A new catalyst for reductive cleavage of methylated glycans.


PMID 3040250

Abstract

Several per-O-methylated D-glucans and D-fructans were used as models in an attempt to identify new catalysts for carrying out reductive cleavage. Included in these model studies were several D-glucans that contained 4-linked D-glucopyranosyl residues as well as one having a 4-linked D-glucitol residue, as both types of residue had previously been found to give rise to substantial proportions of artifactual products. These studies led to the development of a new catalyst for carrying out reductive cleavage, namely, a mixture of 5 equivalents of trimethylsilyl methanesulfonate (Me3SiOSO2Me) and 1 equivalent of boron trifluoride etherate (BF3 . Et2O) per equivalent of acetal. This new catalyst was found to accomplish the reductive cleavage of per-O-methylated, 4-linked D-glucopyranosyl residues and 4-linked D-glucitol residues, to give only the expected derivatives of 1,5-anhydro-D-glucitol and D-glucitol, respectively. The mixture of Me3SiOSO2Me and BF3 . Et2O also catalyzed reductive cleavage of the D-fructofuranosyl residues of per-O-methylated sucrose and inulin, to give only the expected derivatives of 2,5-anhydro-D-mannitol and 2,5-anhydro-D-glucitol. Indeed, when used alone, Me3SiOSO2Me also rapidly catalyzed the reductive cleavage of D-fructofuranosyl residues, but, under the same conditions, D-glucopyranosyl residues were unaffected. The results of these and other model studies demonstrated that catalysis of reductive cleavage by the mixture of Me3SiOSO2Me and BF3 . Et2O occurs in a synergistic manner. Examination of the mixture of Me3SiOSO2Me and BF3 . Et2O by 1H-n.m.r. spectroscopy demonstrated that a reaction occurs to generate trimethylsily fluoride and species of the type F2BOSO2Me, FB(OSO2Me)2, or B(OSO2Me)3 via ligand exchange.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

64296
(Trimethylsilyl)methanesulfonate, ≥97%
C4H12O3SSi