EMAIL THIS PAGE TO A FRIEND

Biochemical and biophysical research communications

Biosynthesis of 12-oxo-10,15(Z)-phytodienoic acid: identification of an allene oxide cyclase.


PMID 3178850

Abstract

Incubation of 13(S)-hydroperoxy-9(Z),11(E),15(Z)-octadecatrienoic acid with corn (Zea mays L.) hydroperoxide dehydrase led to the formation of an unstable allene oxide derivative, 12,13(S)-epoxy-9(Z),11,15(Z)-octadecatrienoic acid. Further conversion of the allene oxide yielded two major products, i.e. alpha-ketol 12-oxo-13-hydroxy-9(Z),15(Z)-octadecadienoic acid, and 12-oxo-10,15(Z)-phytodienoic acid (12-oxo-PDA). 12-Oxo-PDA was formed from allene oxide by two different pathways, i.e. spontaneous chemical cyclization, leading to racemic 12-oxo-PDA, and enzyme-catalyzed cyclization, leading to optically pure 12-oxo-PDA. The allene oxide cyclase, a novel enzyme in the metabolism of oxygenated fatty acids, was partially characterized and found to be a soluble protein with an apparent molecular weight of about 45,000 that specifically catalyzed conversion of allene oxide into 9(S),13(S)-12-oxo-PDA.