The Journal of biological chemistry

A novel method for producing anti-peptide antibodies. Production of site-specific antibodies to the T cell antigen receptor beta-chain.

PMID 3276675


Peptide antigens used to generate site-specific antibodies to proteins are of interest in the development of vaccines. The need to conjugate them to a carrier protein for optimal immunogenicity results in a number of problems including a possible immune response to the carrier. Here we describe a new method of synthesizing an immunogenic peptide antigen, referred to as multiple antigenic peptide (MAP), which may render the need for a carrier protein obsolete. A 14-residue sequence derived from the human T cell antigen receptor beta-chain constant region was selected, and the peptide was synthesized directly onto a branching lysine core with 8 copies of the 14-residue peptide linked to the core by the COOH-terminal amino acid. The molecular weight of this structure was 13,422 of which only 7% represents the lysine residues of the core. The octameric MAP was highly immunogenic in mice and rabbits, allowing production of polyclonal and monoclonal antibodies. The majority of these antibodies reacted with the peptide in its monomeric form as well as its octameric form. Moreover, the antibodies reacted with the intact beta-chain protein. The antigenic determinants of the peptide that were recognized by the antibodies included continuous determinants and conformational determinants. The NH2-terminal residues of the octameric MAP appeared to be most immunogenic. There were no antibodies to the central lysine core. This method of direct synthesis of a polymeric peptide provides accurate knowledge of the conformation and quantity of the peptide prior to immunization, which is usually not the case when peptides are conjugated to carriers. The method is versatile because the possibility exists to synthesize MAP with 16 or 32 peptide arms or to synthesize polymers containing two different peptides.