The Biochemical journal

Differential effect of iodination of ovotransferrin and its two half-molecule domains on binding to transferrin receptors on chick embryo red blood cells.

PMID 3426544


Iodination of the C-terminal half-molecule domain of ovotransferrin (OTF) causes a significant reduction in binding to transferrin receptors on chick reticulocytes when compared to the binding observed with holo-OTF or the N-terminal half-molecule domain. (In such studies binding of iodinated half-molecule is measured in the presence of equimolar unlabelled complementary half-molecule). In particular iodination of the C-terminal half-molecule domain by the solid-phase reagent Iodogen resulted in half the binding found when ICl was used. The iodinated N-terminal half-molecule domain labelled by either Iodogen or ICl showed consistently higher binding than was observed with the C-terminal half-molecule or Fe2OTF. Although the molecular basis for the reduced binding of these proteins relative to the N-terminal half-molecule has not been definitively established, the implication is that there is a Tyr in the C-terminal domain which is involved in receptor recognition and binding. Addition of one or more bulky iodine atoms to the Tyr interferes with the interaction. Tryptic peptide maps of unlabelled holo-OTF and half-molecule domains and of the half-molecule domains labelled by both ICl and Iodogen are presented. The maps indicate limited access of the tyrosine residues to iodination especially in the C-terminal half-molecule domain. Equilibrium binding experiments have been carried out to compare the Kd (the apparent dissociation constant for the interaction between OTF and the transferrin receptors on chick-embryo red blood cells) with the Bmax, (binding at infinite free-ligand concentration) for Fe2OTF labelled using ICl, Iodogen, Enzymobeads and Chloramine-T. The effect of labelling Fe2OTF by Bolton-Hunter reagent has also been assessed. These studies show that ICl appears to be the reagent of choice for labelling Fe2OTF and its half-molecule domains.