EMAIL THIS PAGE TO A FRIEND

Journal of analytical toxicology

Metabolism of doxylamine succinate in Fischer 344 rats. Part II: Nonconjugated urinary and fecal metabolites.


PMID 3599917

Abstract

Elimination and metabolic profiles of doxylamine and its nonconjugated metabolites were determined after the oral administration of [14C]-doxylamine succinate (13.3 mg/kg and 133 mg/kg doses) to male and female Fischer 344 rats. Total urine and fecal recovery of the administered dose was greater than 90% regardless of sex or dose. The cumulative urinary and fecal elimination of these nonconjugated doxylamine metabolites at the 13.3 mg dose was 44.4 +/- 4.4% and 36.0 +/- 5.8% of the total recovered dose for male and female rats, respectively. The cumulative urinary and fecal elimination of the doxylamine nonconjugated metabolites at the 133 mg/kg dose was 38.7 +/- 2.7% and 41.4 +/- 1.0% of the total recovered dose for male and female rats, respectively. In order to determine the contribution of mammalian and bacterial enzymes in the overall metabolism and excretion patterns for doxylamine, two in vitro techniques were investigated. Incubation of [14C]-doxylamine succinate with human and rat intestinal microflora indicated that anaerobic bacteria were not capable of effecting the degradation of [14C]-doxylamine succinate. However, the incubation of [14C]-doxylamine succinate with isolated rat hepatocytes generated several metabolites similar to those observed in vivo. The nonconjugated doxylamine metabolites isolated and identified include: doxylamine N-oxide, desmethyldoxylamine, didesmethyldoxylamine and ring-hydroxylated products of doxylamine and desmethyldoxylamine. The studies demonstrate the role of hepatic metabolism in the elimination of doxylamine succinate in the rat.