EMAIL THIS PAGE TO A FRIEND

The Journal of biological chemistry

Generation of nitric oxide by enzymatic oxidation of N-hydroxy-N-nitrosamines.


PMID 3980468

Abstract

The nitric oxide (N = O) free radical exhibits potent cytocidal, mutagenic and vasodilatory properties. We have examined the hypothesis that the hydroxynitrosamino functionality (see sequence in text), which occurs naturally in antineoplastic and antihypertensive agents, will directly generate N = O following peroxidatic 1-electron oxidation. Cupferron (see sequence in text) is indeed an excellent (k greater than 10(7) m-1 s-1) substrate for horseradish peroxidase. The products are N = O and nitrosobenzene (phi - N = O) which are generated and consumed as follows. First, cupferron is oxidized by the classical peroxidatic mechanism to form an unstable nitroxide free radical (see sequence in text) which then forms N = O and phi - N = O spontaneously (see sequence in text). The N = O then reacts with phi - N = O to reform cupferron (see sequence in text) or with the enzyme to generate the characteristic peroxidase--N = O chromophore. Simultaneously, in a competitive reaction with O2, the N = O is converted to NO-2 (4N = O + O2 + 2H2O------------4NO-2 + 4H+). The reactivity of hydroxynitrosamino compounds with horseradish peroxidase is in the order cupferron greater than hydroxynitrosaminomethane greater than alanosine. These model reactions, involving direct oxidation of the hydroxynitrosamino moiety, comprise a novel pathway for the biological production of N = O.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

675636
Cupferron, 97%, reagent grade
C6H9N3O2