Hoppe-Seyler's Zeitschrift fur physiologische Chemie

Structure and function of L-lactate dehydrogenases from thermophilic and mesophilic bacteria. III) The primary structure of thermophilic lactate dehydrogenase from Bacillus stearothermophilus. Hydroxylamine-, o-iodosobenzoic acid- and tryptic-fragments. The complete amino-acid sequence.

PMID 6352452


Based on the partial sequence of the cyanogen bromide fragments [Tratschin, J.D., Wirz, B., Frank, G. and Zuber, H. (1983) Hoppe-Seyler's Z. Physiol. Chem. 364, 879-892], the amino-acid sequence of thermophilic lactate dehydrogenase from B. stearothermophilus was completed by the preparation and sequencing (sequenator, carboxypeptidase A and Y) of further overlapping fragments. Suitable peptide fragments were obtained by lactate dehydrogenase cleavage with hydroxylamine, o-iodosobenzoic acid and trypsin. The polypeptide chain of thermophilic lactate dehydrogenase from B. stearothermophilus consists of 317 amino-acid residues. While sequence homology with mesophilic lactate dehydrogenase of higher organisms reaches 35%, it is substantially higher with this mesophilic enzyme of bacillae (greater than 60%, B. megaterium, B. subtilis). The secondary structure elements and amino-acid residues of the active site of thermophilic lactate dehydrogenase deducted from primary structure data were compared with those from the mesophilic enzyme, the same was done for the internal sequence homology at the nucleotide-binding units. A comparative structure analysis (matrix system) based on the primary structure data of thermophilic enzyme should provide insight into the characteristic structure differences between thermophilic and mesophilic lactate dehydrogenase.

Related Materials

Product #



Molecular Formula

Add to Cart

2-Iodobenzoic acid, 98%