Biochimica et biophysica acta

Purification and kinetic characterization of a specific glucokinase from Streptococcus mutans OMZ70 cells.

PMID 7150605


Glucokinase (ATP-D-glucose 6-phosphotransferase, EC was purified 144-fold from extracts of sucrose-grown Streptococcus mutans OMZ70 (ATCC 33535) cells. Twenty compounds were tested as potential substrates; only glucose (Km = 0.61 mM) was phosphorylated. The reaction catalyzed by the purified enzyme was dependent on the presence of glucose, nucleoside triphosphate and metal ion; glucose 6-phosphate and ADP were the products. Of the seven nucleoside triphosphates tested, ATP (Km = 0.21 mM) was the most efficient phosphate donor in the enzyme-catalyzed formation of glucose 6-phosphate. Both Mn2+ (relative activity, 173%) and Co2+ (264%) were more efficient than Mg2+ (100%) in supporting the enzyme reaction. The enzyme exhibited a broad maximal activity in the pH range from 7.5 to 9.5. The apparent molecular weight of glucokinase, as determined by gel filtration, was 41 000. With glucose held constant at either saturating or subsaturating levels, ADP was a noncompetitive inhibitor of ATP (Ki = 0.67 mM). ADP was an uncompetitive inhibitor of glucose (Ki = 0.71 mM) when ATP was held constant at either a saturating or subsaturating concentration. Glucose 6-phosphate was a competitive inhibitor of glucose (Ki = 0.31 mM) at saturating ATP and exhibited noncompetitive or mixed inhibition at a subsaturating ATP concentration. Glucose 6-phosphate was not an inhibitor toward ATP at saturating glucose concentrations, but exhibited noncompetitive inhibition at subsaturating glucose concentrations. The kinetic data support the postulation of a sequential mechanism for the glucokinase reaction; they are consistent with an ordered mechanism in which glucose binds first and glucose 6-phosphate dissociates last. Furthermore, the data suggest the existence of more than one enzyme binding site for the substrates of the glucokinase reaction.

Related Materials