Mutation research

Genotoxic effects of the o-phenylphenol metabolites phenylhydroquinone and phenylbenzoquinone in V79 cells.

PMID 7523918


o-Phenylphenol (OPP) and its sodium salt, sodium o-phenylphenate are broad spectrum fungicides and disinfectants with widespread usage. Both chemicals have been reported to induce cancer in the kidney and urinary bladder of Fischer 344 rats. Recently it has been proposed that the metabolic activation of OPP occurs via a two-step process involving the cytochrome P450-mediated formation of phenylhydroquinone (PHQ) in the liver and a prostaglandin H synthase-mediated oxidation of PHQ to phenylbenzoquinone (PBQ) in the urinary tract. In order to further investigate the metabolic activation and genotoxic effects of OPP, we have investigated the ability of PHQ and PBQ to induce micronuclei and mutations at the HGPRT locus in a prostaglandin H synthase-containing V79 Chinese hamster lung fibroblast cell line. In arachidonic acid-supplemented V79 cells, PHQ induced a significant increase in micronuclei whereas no increase was observed in cells in the absence of arachidonic acid supplementation. Immunofluorescent labeling of centromeric proteins with the CREST antibody indicated that the arachidonic acid-dependent induction of micronuclei by PHQ was due almost entirely to micronuclei containing whole chromosomes which had failed to segregate properly during mitosis. The induction of micronuclei by PHQ was significantly inhibited by treatment of the cells with indomethacin, aspirin, ascorbic acid, dithiothreitol and reduced glutathione supporting a role for prostaglandin H synthase in the genotoxic effects of PHQ. No increase in 6-thioguanine-resistant cells was observed in cells treated with PHQ or PBQ. This arachidonic acid-dependent conversion of PHQ to a genotoxic species is consistent with the hypothesis that a prostaglandin H synthase-mediated activation of PHQ may be involved in OPP- and SOPP-induced urinary tract carcinogenesis and also suggests that the induction of aneuploidy may play an important role in OPP-induced tumorigenesis.

Related Materials

Product #



Molecular Formula

Add to Cart

2-Phenylhydroquinone, 97%