Pharmaceutical research

Structures of nanoparticles prepared from oil-in-water emulsions.

PMID 7724486


Hydrophobic substances were dissolved in an organic solvent and emulsified with an aqueous solution at very high shear. Droplets of very small sizes (50-100 nm) were obtained by using surfactants which were combinations of lecithins and bile salts. After emulsification, the organic solvent was removed by evaporation, yielding stable dispersions of solid particles. The sizes, shapes, and structures of the particles were examined through quasi-elastic light scattering, small-angle neutron scattering and cryotransmission electron microscopy. Cholesterol acetate particles stabilized by lecithin and bile salts were found to be platelets of 10-20 nm thickness and 80 nm diameter. Cholesteryl acetate particles stabilized with POE-(20)-sorbitan monolaurate were dense spherical globules of diameter 100 nm. Particles with a composition similar to the endogenously occurring, lipoprotein, LDL, were large spherical globules studded with small vesicles. The subsequent evolution of the cholesteryl acetate dispersion upon aging was examined. There was no transfer of cholesteryl acetate between particles nor to large crystals. However, some aggregation of the particles was observed when the volume fraction of the particles in the aqueous dispersion exceeded 0.05. Thus, the structure of the nanoparticles obtained through deswelling of emulsion droplets changes according to the nature of the emulsifiers and to the composition of the hydrophobic substances which they contain.

Related Materials

Product #



Molecular Formula

Add to Cart

Cholesteryl acetate, 97%