EMAIL THIS PAGE TO A FRIEND

The Journal of biological chemistry

Mechanism of formation of reovirus mRNA 5'-terminal blocked and methylated sequence, m7GpppGmpC.


PMID 821947

Abstract

Blocked and methylated 5' termini of reovirus mRNA are formed by viral cores at an early stage of transcription. Cores incubated in a complete transcription reaction mixture for 30 s, or in a mixture lacking UTP and ATP for a longer time, synthesize the "cap" structure, m7GpppGmpC. The dinucleotide ppGpC functions as substrate for a core-associated guanylyltransferase and is converted to GpppGpC by addition of pG from GTP. For optimal conversion, both the diphosphate terminus and phosphodiester bond are required. pGpC is not a substrate, but pppGpC is utilized after removal of the gamma-phosphate by a core nucleotide phospohydrolase. Methyltransferases also present in cores transfer methyl groups sequentially from S-adenosylmethionine (AdoMet) to the N7-position of the 5'-terminal guanosine followed by the 2'-OH of the penultimate guanosine. GpppGpC is hydrolyzed by cores in the presence of pyrophosphate to ppGpC, the predominant 5'-terminal structure of reovirus mRNA made in the absence of S-adenosylmethionine. N7-methylation prevents pyrophosphorolysis of m7GpppGpC, which may explain the increased proportion of blocked, methylated 5' termini in viral mRNA synthesized in the presence of S-adenosylmethionine. On the basis of these findings, the following reaction series is proposed for the synthesis of reovirus mRNA caps. In the series, AdoHcy is the abbreviation for S-adenosylhomocysteine (see article)9

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

344249
Diphenyl phosphoryl chloride, 96%
C12H10ClO3P