Journal of bacteriology

Regulation of the Bacillus subtilis acetate kinase gene by CcpA.

PMID 8226682


The Bacillus subtilis gene encoding acetate kinase was identified on the basis of sequence similarity to the Escherichia coli ackA gene and to a second E. coli gene closely related to ackA. Insertional inactivation of this region of the B. subtilis chromosome resulted in the disappearance of acetate kinase enzyme activity in cell extracts. The ackA gene was mapped to a site close to the ccpA gene, at 263 degrees. The transcriptional start site for B. subtilis ackA was located 90 bp upstream from the start of the coding region, and expression was increased by growth in the presence of excess glucose. Growth of the AckA- mutant was inhibited by glucose, suggesting that acetate kinase is important for excretion of excess carbohydrate. The stimulation of ackA expression by glucose was blocked in a CcpA- mutant, indicating that CcpA, which is required for glucose repression of certain carbon source utilization genes, including amyE, may also be involved in activation of carbon excretion pathways. Two sequences resembling the amyO operator site were identified upstream of the ackA promoter; removal of this region resulted in loss of glucose activation of ackA expression.