EMAIL THIS PAGE TO A FRIEND

The American journal of physiology

Vanadate causes synthesis of endothelium-derived NO via pertussis toxin-sensitive G protein in pigs.


PMID 8760188

Abstract

The effects of sodium orthovanadate, an inhibitor of protein tyrosine phosphatases, on the endothelial nitric oxide (NO) pathway were studied in vitro. Vanadate caused endothelium-dependent relaxations in isolated porcine coronary arteries, which were abolished by N omega-nitro-L-arginine methyl ester. The relaxations were also abolished by pertussis toxin, an inhibitor of certain G proteins. Tyrosine kinase inhibitors, genistein and alpha-cyano-3-ethoxy-4-hydroxy-5-phenyl-methylcinnamamide (ST-638), significantly attenuated the vanadate-induced relaxations. Vanadate also caused pertussis toxin-sensitive, endothelium-dependent relaxations in isolated porcine renal and femoral arteries and jugular veins. Immunoblots, using an antibody to phosphotyrosines and to c-Src in native porcine aortic endothelial cells, respectively, showed that vanadate induced an elevation of phosphotyrosine proteins and a decrease in the amount of the active form of c-Src family kinases; both changes were markedly suppressed by cotreatment with ST-638. These results indicate that in porcine blood vessels, vanadate causes a synthesis of endothelium-derived NO for which endothelial tyrosine kinases and pertussis toxin-sensitive G protein are considered to be closely involved.

Related Materials

Product #

Image

Description

Molecular Formula

Add to Cart

S1195
ST638, ≥98% (HPLC), solid
C19H18N2O3S