EMAIL THIS PAGE TO A FRIEND

The Journal of biological chemistry

Molecular cloning, mapping to human chromosome 1 q21-q23, and cell binding characteristics of Spalpha, a new member of the scavenger receptor cysteine-rich (SRCR) family of proteins.


PMID 9045627

Abstract

CD5 and CD6, two type I cell surface antigens predominantly expressed by T cells and a subset of B cells, have been shown to function as accessory molecules capable of modulating T cell activation. Here we report the cloning of a cDNA encoding Spalpha, a secreted protein that is highly homologous to CD5 and CD6. Spalpha has the same domain organization as the extracellular region of CD5 and CD6 and is composed of three SRCR (scavenger receptor cysteine rich) domains. Chromosomal mapping by fluorescence in situ hybridization and radiation hybrid panel analysis indicated that the gene encoding Spalpha is located on the long arm of human chromosome 1 at q21-q23 within contig WC1.17. RNA transcripts encoding Spalpha were found in human bone marrow, spleen, lymph node, thymus, and fetal liver but not in non-lymphoid tissues. Cell binding studies with an Spalpha immunoglobulin (Spalpha-mIg) fusion protein indicated that Spalpha is capable of binding to peripheral monocytes but not to T or B cells. Spalpha-mIg was also found to bind to the monocyte precursor cell lines K-562 and weakly to THP-1 but not to U937. Spalpha-mIg also bound to the B cell line Raji and weakly to the T cell line HUT-78. These findings indicate that Spalpha, a novel secreted protein produced in lymphoid tissues, may regulate monocyte activation, function, and/or survival.

Related Materials