EMAIL THIS PAGE TO A FRIEND

Molecular and cellular biology

The PRK2 kinase is a potential effector target of both Rho and Rac GTPases and regulates actin cytoskeletal organization.


PMID 9121475

Abstract

The Ras-related Rho family GTPases mediate signal transduction pathways that regulate a variety of cellular processes. Like Ras, the Rho proteins (which include Rho, Rac, and CDC42) interact directly with protein kinases, which are likely to serve as downstream effector targets of the activated GTPase. Activated RhoA has recently been reported to interact directly with several protein kinases, p120 PKN, p150 ROK alpha and -beta, p160 ROCK, and p164 Rho kinase. Here, we describe the purification of a novel Rho-associated kinase, p140, which appears to be the major Rho-associated kinase activity in most tissues. Peptide microsequencing revealed that p140 is probably identical to the previously reported PRK2 kinase, a close relative of PKN. However, unlike the previously described Rho-binding kinases, which are Rho specific, p140 associates with Rac as well as Rho. Moreover, the interaction of p140 with Rho in vitro is nucleotide independent, whereas the interaction with Rac is completely GTP dependent. The association of p140 with either GTPase promotes kinase activity substantially, and expression of a kinase-deficient form of p140 in microinjected fibroblasts disrupts actin stress fibers. These results indicate that p140 may be a shared kinase target of both Rho and Rac GTPases that mediates their effects on rearrangements of the actin cytoskeleton.