Micron (Oxford, England : 1993)

Systematic investigations of the contrast results of histochemical stainings of neurons and glial cells in the human brain by means of image analysis.

PMID 9332009


The investigation of neurohistological specimens by image analysis has become an important tool in morphological neuroscience. The problems which arise during the processing of these images are non-trivial, especially if a pattern recognition of cells in the imaged tissue is intended. One of the major problems faced concerns the segmentation of structures of interest, whether cells or other histologic structures. The segmentation problem is often the result of an inappropriate staining procedure. For serious image analysis to be performed, the material under investigation must be optimally prepared. Spatially complex patterns, e.g. fuzzy-like neighbouring neurons, are easy to recognize for humans. But the integrative and associative performance of current artificial neuronal network schemes is too low to achieve the same recognition quality as humans do. Therefore, a general analysis of staining characteristics was performed, especially with respect to those stains which are relevant to object segmentation. Although most image analytical investigations of tissues are based on stained samples, a study of this type has not been previously conducted. Of the stains and procedures evaluated, the gallocyanin chrome alum combination staining provided the best stain contrast. Furthermore, this staining method shows sufficient constancy within different parts of the human brain. Even the fine nuclear textures are differentiable and can be used for further pattern recognition procedures.