Acta physiologica Scandinavica. Supplementum

Ligand binding sites of Na,K-ATPase.

PMID 9789548


Our studies have concentrated on two aspects of the Na,K-ATPase, the first relates to the identification of amino acids involved in binding Na+ and K+ during the catalytic cycle and the second involves defining how cardiac glycosides inhibit the enzyme. To date, three amino acids, Ser775, Asp804 and Asp808, all located in transmembrane regions five and six, have been shown to play a major role in K+ binding. These findings are based on site directed mutagenesis and expression studies. In order to understand how cardiac glycosides interact with the Na,K-ATPase, studies again involving mutagenesis coupled with expression have been used. More specifically, amino acid residues have been substituted in an ouabain sensitive alpha subunit using random mutagenesis, and the ability of the resulting enzyme to confer resistance to ouabain sensitive cells was determined. Interestingly, the amino acids of the alpha subunit which alter ouabain sensitivity cluster in two major regions, one comprised of the first and second transmembrane spanning domains and the extracellular loop joining them, and the second formed by the extracellular halves of transmembrane regions four, five, six and seven. As noted above, transmembrane regions five and six also contain the three amino acid residues Ser775, Asp804 and Asp808 which play a key role in cation transport, possibly binding K+. Thus, it is reasonable to propose that cardiac glycosides bind to two sites, the N- terminal region and the central region which contains the cation binding sites. Cardiac glycoside binding to the center region may lock the cation transport region into a configuration such that the enzyme cannot go through the conformational change required for ion transport.

Related Materials

Product #



Molecular Formula

Add to Cart

Ouabain octahydrate, ≥95% (HPLC), powder
C29H44O12 · 8H2O