Cellular and molecular life sciences : CMLS

Chimeras of human lysozyme and alpha-lactalbumin: an interesting tool for studying partially folded states during protein folding.

PMID 9849616


Protein folding is an extremely active field of research where biology, chemistry, computer science and physics meet. Although the study of protein-folding intermediates in general and equilibrium intermediates in particular has grown considerably in recent years, many questions regarding the conformational state and the structural features of the various partially folded intermediate states remain unanswered. Performing kinetic measurements on proteins that have had their structures modified by site-directed mutagenesis, the so-called protein-engineering method, is an obvious way to gain fine structural information. In the present review, this method has been applied to a variety of proteins belonging to the lysozyme/alpha-lactalbumin family. Besides recombinants obtained by point mutations of individual critical residues, chimeric proteins in which whole structural elements (10-25 residues) from alpha-lactalbumin were inserted into a human lysozyme matrix are examined. The conformational properties of the equilibrium intermediate states are discussed together with the structural characterization of the partially unfolded states encountered in the kinetic folding pathway.

Related Materials

Product #



Molecular Formula

Add to Cart

L7252 Lactalbumin