• USA Home
  • 734594 - N,N′-Di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine

EMAIL THIS PAGE TO A FRIEND
734594 Sigma-Aldrich

N,N′-Di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine

96%

Synonym: N,N′-Bis(naphthalen-1-yl)-N,N′-bis(phenyl)benzidine, NPB, NPD

  • CAS Number 123847-85-8

  • Empirical Formula (Hill Notation) C44H32N2

  • Molecular Weight 588.74

  •  MDL number MFCD03093246

  •  PubChem Substance ID 329764912

  •  NACRES NA.23

Purchase

Properties

Related Categories Hole Transport (HT) & Hole Injection Layer (HIL) Materials, Hole Transport Materials, Materials Science, OLED and PLED Materials, Organic and Printed Electronics More...
Quality Level   100
assay   96%
mp   275-280 °C
  279-283 °C (lit.)
Orbital energy   HOMO 5.5 eV 
  LUMO 2.4 eV 
OLED Device Performance   ITO/NPD/TCTA/BCPO:Ir(piq)3 (7-8%)/BCP/Alq3/LiF/Al
• Color: red
• Max. Luminance: 24529 Cd/m2
• Max. EQE: 17 %
• Turn-On Voltage: 2.7 V
  ITO/NPD/TCTA/BCPO:Ir(ppy)3 (7-8%)/BCP/Alq3/LiF/Al
• Color: green
• Max. Luminance: 207839 Cd/m2
• Max. EQE: 21.6 %
• Turn-On Voltage: 2.1 V
  ITO/NPD/mCP/BCPO:FIrpic (8%)/TAZ/LiF/Al
• Color: blue
• Max. Luminance: 35677 Cd/m2
• Max. EQE: 23.5 %
• Turn-On Voltage: 2.8 V
  ITO/PEDOT:PSS/NPD/TCTA/m-CBTZ:Ir(Bt)2(acac) (10%)/TPBI/LiF/Al
• Color: yellow
• Max. Luminance: 106000 Cd/m2
• Max. EQE: 17.5 %
• Turn-On Voltage: 3 V
SMILES string   c1ccc(cc1)N(c2ccc(cc2)-c3ccc(cc3)N(c4ccccc4)c5cccc6ccccc56)c7cccc8ccccc78
InChI   1S/C44H32N2/c1-3-17-37(18-4-1)45(43-23-11-15-35-13-7-9-21-41(35)43)39-29-25-33(26-30-39)34-27-31-40(32-28-34)46(38-19-5-2-6-20-38)44-24-12-16-36-14-8-10-22-42(36)44/h1-32H
InChI key   IBHBKWKFFTZAHE-UHFFFAOYSA-N

Description

Packaging

5 g in glass bottle

Application

Hole transporting material for OLED devices

Safety & Documentation

Safety Information

RIDADR 
NONH for all modes of transport
WGK Germany 
WGK 3
Flash Point(F) 
Not applicable
Flash Point(C) 
Not applicable

Documents

Certificate of Analysis (COA)

Please Enter a Lot Number
Protocols & Articles

Articles

Materials Design Concepts for Efficient Blue OLEDs:
A Joint Theoretical and Experimental Study

Since their discovery,1 organic light emitting devices (OLEDs) have evolved from a scientific curiosity into a technology with applications in flat panel displays and the potential to revolutionize t...
Evgueni Polikarpov, Asanga B. Padmaperuma
Keywords: Applications, Building blocks, Help, Materials Science, Methods, Purification, Reductions, Search, Support, Tools, Type

Optoelectronic Devices Based on Diketopyrrolopyrrole (DPP)-containing Conjugated Small Molecules

Optoelectronic devices such as light-emitting diodes (LEDs), solar cells, and light-emitting field effect transistors (FETs) that utilize organic materials as their light harvesting and/or charge tra...
Jianhua Liu and Thuc-Quyen Nguyen
Material Matters 7.1
Keywords: Absorption, Alkylations, Applications, Bacterial conjugations, Biochemistry, Brominations, Building blocks, Capabilities, Nucleic acid annealing, Nucleic acid hybridization, Purification, Recombination, Solar cells, Solvents, Spectra, Spectroscopy, Stille coupling, Support, Suzuki coupling, Type, Ultraviolet-Visible spectroscopy

Organic Optoelectronics on Shape Memory Polymers

Center for Organic Photonics and Electronics (COPE), School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA *E-mail: bernard.kippelen@ece.gatech.e...
Canek Fuentes-Hernandez, Bernard Kippelen*
Material Matters, 2017, 12.3
Keywords: AGE, Adhesion, Atomic layer deposition, Biological processes, Catalysis, Ceramics, Deposition, Electronics, Environmental, Nanomaterials, Nanotubes, Oxidations, Photovoltaics, Polymerization reactions, Reductions, Semiconductor, Separation

Organic Semiconductor Laser Materials

Over recent years, a wide variety of challenges aiming for electrical pumping of organic laser diodes have been addressed. However, organic laser diodes have difficulty gaining widespread application...
Chihaya Adachi, Hajime Nakanotani
Material Matters 2009, 4.3, 74.
Keywords: Absorption, Amplification, Electronics, Infrared spectroscopy, Nitrogen phosphorus detector, Organic electronics, Recombination, Semiconductor

Organic and Hybrid Electronics in Optical Analytical Applications

1Microelectronics Research Center and Department of Electrical & Computer Engineering, Iowa State University, Ames, IA, 50011, USA 2Department of Physics & Astronomy, Iowa State University, Ames, IA,...
Keywords: Absorption, Cardiovascular, Catalysis, Chromatin immunoprecipitation, Diagnostic, Electronics, Evaporation, Infrared spectroscopy, Materials Science, Oxidations, Recombination, Semiconductor, Sol-gel, Solar cells

Peer-Reviewed Papers
15

References

Related Products

Technical Service:

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Bulk Ordering & Pricing:

Need larger quantities for your development, manufacturing or research applications?