• USA Home
  • 764639 - 5,5′′′-Bis(tridecafluorohexyl)-2,2′:5′,2 ′′:5′′,2′′′-quaterthiophene

764639 Sigma-Aldrich

5,5′′′-Bis(tridecafluorohexyl)-2,2′:5′,2 ′′:5′′,2′′′-quaterthiophene

Synonym: α,ω-Diperfluorohexyl-quarterthiophene, DFH-4T

  • CAS Number 446043-85-2

  • Empirical Formula (Hill Notation) C28H8F26S4

  • Molecular Weight 966.58

  •  MDL number MFCD23098728

  •  PubChem Substance ID 329767133

  •  NACRES NA.23



Related Categories Materials Science, Organic Field Effect Transistor (OFET) Materials, Organic and Printed Electronics, n-Type Organic Semiconductors, n-Type Small Molecules More...
Quality Level   100
mp   205-210 °C
semiconductor properties   N-type (mobility≤0.64 cm2/V·s)
SMILES string   FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)c1ccc(s1)-c2ccc(s2)-c3ccc(s3)-c4ccc(s4)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F
InChI   1S/C28H8F26S4/c29-17(30,19(33,34)21(37,38)23(41,42)25(45,46)27(49,50)51)15-7-5-13(57-15)11-3-1-9(55-11)10-2-4-12(56-10)14-6-8-16(58-14)18(31,32)20(35,36)22(39,40)24(43,44)26(47,48)28(52,53)54/h1-8H


General description

5,5′′′-Bis(tridecafluorohexyl)-2,2′:5′,2′′:5′′,2′′′-quaterthiophene (DFH-4T) is a n-type semiconducting material. It is a quaterthiophene derivative that contains fluoroalkyl groups and can be used as an electron transporting layer. It can be used in organic electronics.


This molecule has shown high mobilities (electron mobilities of up to 0.64 cm2/Vs) when used as an n-type semiconducting material in OFET devices.


1 g in glass bottle

250 mg in glass insert

Safety & Documentation

Safety Information

NONH for all modes of transport
WGK Germany 
Flash Point(F) 
Not applicable
Flash Point(C) 
Not applicable


Certificate of Analysis (COA)

Please Enter a Lot Number
Protocols & Articles


Development of Small Molecule Donors for Solution-Processed Organic Solar Cells

Abby-Jo Payne and Gregory C. Welch Dalhousie University, Department of Chemistry 6274 Coburg Road, Halifax, Nova Scotia, Canada B3H 4R2 Email: gregory.welch@dal.ca
Keywords: Absorption, Bacterial conjugations, Building blocks, Deposition, Infrared spectroscopy, Nucleic acid annealing, Phase transitions, Separation, Solar cells, Solvents, Substitutions

Flexible Organic Transistors for Biomedical Applications

Tsuyoshi Sekitani,* Kazunori Kuribara, Tomoyuki Yokota, Takao Someya Department of Electric and Electronic Engineering, Department of Applied Physics, School of Engineering University of Tokyo, 7-3-1...
Keywords: Absorption, Building blocks, Degradations, Diffraction, Electronics, Evaporation, Microscopy, Nucleic acid annealing, Oxidations, Reductions, Semiconductor, Solar cells, Spectroscopy, Sterilizations, X-Ray diffraction

Polymer Semiconductors for Intrinsically Stretchable Organic Transistors

Department of Chemical Engineering, Stanford University, Stanford, CA 94305-5025, USA *E-mail: zbao@stanford.edu
Ging-Ji Nathan Wang, Zhenan Bao*
Material Matters, 2017, 12.3
Keywords: Bacterial conjugations, Crystallization, Degradations, Diffraction, Electronics, Hydrogenations, Microscopy, Nucleic acid annealing, Optical microscopy, Organic electronics, Polymerization reactions, Semiconductor, Separation, Solar cells, X-Ray diffraction

Soluble Pentacene Precursors

In order to introduce un-functionalized pentacene within a device such as an organic field effect transistor (OFET), soluble pentacene precursors, which readily transform into pentacene upon heating ...
Prof. Cherie R. Kagan

Associate Professor, Department of Materials Science and Engineering,
University of Pennsylvania, Philadelphia, PA 19104
Keywords: Deposition, Evaporation, Semiconductor, Size-exclusion chromatography

Peer-Reviewed Papers


Related Products

Technical Service:

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Bulk Ordering & Pricing:

Need larger quantities for your development, manufacturing or research applications?