• USA Home
  • 560596 - Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)

EMAIL THIS PAGE TO A FRIEND
560596 Sigma-Aldrich

Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)

2.8 wt % dispersion in H2O, low-conductivity grade

Synonym: PEDOT:PSS, Poly(2,3-dihydrothieno-1,4-dioxin)-poly(styrenesulfonate)

Purchase

Description

General description

A conducting polymer such as poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonate) anions (PEDOT/PSS) is widely used in various organic optoelectronic devices. PEDOT: PSS is a blend of cationic polythiopene derivative, doped with a polyanion. High electrical conductivity and good oxidation resistance of such polymers make it suitable for electromagnetic shielding and noise suppression. Thus, the polymer film was found to possess high transparency throughout the visible light spectrum and even into near IR and near UV regions, virtually 100% absorption from 900-2,000 nm. No absorption maximum from 400-800 nm. Conductive polymer blend. Impact of small electric and magnetic fields on the polymer was studied.

Preferably applied by spin-coating. Filtration of the dispersion through a 0.45 μm memberane filter is recommended before use. The coatings are dried at a maximum temperature of 200 °C for 1 minute, but a temperature between 50 °C and 150 °C is usually sufficient. The optimal thickness of the dried layer is in the range of 50-250 nm.

Packaging

25, 100 g in poly bottle

Application

Useful as an interfacial hole injection layer in OLED and PLED devices to lower operating voltages, increase luminescence efficiency, and enhance display lifetimes.

Virtually 100% absorption from 900-2,000 nm. No absorption maximum from 400-800 nm. Conductive polymer blend.

Features and Benefits

Reduced mean particle size with a tighter distribution of sizes allows for the creation of a smooth surface on the ITO electrode, and so electric "shorts" in LED devices can be reduced. Greatly reduced inherent conductivity reduces the occurrence of "cross-talk" in very small pixel (less than 10 micron) matrix array displays.

Packaging

Packaged in poly bottles

Safety & Documentation

Safety Information

Symbol 
GHS05  GHS05
Signal word 
Danger
Hazard statements 
Precautionary statements 
RIDADR 
NONH for all modes of transport
WGK Germany 
2

Documents

Certificate of Analysis

???PDP_SDS_LOT_NUMBER_ERROR_MSG???

Frequently Asked Questions

Which document(s) contains shelf-life or expiration date information for a given product?
If available for a given product, the recommended re-test date or the expiration date can be found on the Certificate of Analysis.
How do I get lot-specific information or a Certificate of Analysis?
The lot specific COA document can be found by entering the lot number above under the "Documents" section.
How do I find price and availability?
There are several ways to find pricing and availability for our products.Once you log onto our website, you will find the price and availability displayed on the product detail page.You can contact any of our Customer Sales and Service offices to receive a quote. USA customers: 1-800-325-3010 orview local office numbers.
What is the Department of Transportation shipping information for this product?
Transportation information can be found in Section 14 of the product's (M)SDS.To access the shipping information for this material, use the link on the product detail page for the product.
Is this PEDOT:PSS, poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), product p-doped or n-doped?
This PEDOT:PSS product is based on hole-doped or P-type polymers. PEDOT can be n-doped, but the materials are too unstable to be of any commercial value.
For product 560596, poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), what is the relationship between film thickness and spin coating speed?
Please see the attached chart showing the spin coating curve for product 560596, poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate).
What is the temperature stability of this poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), PEDOT:PSS, product?
Depositedpoly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), PEDOT:PSS, films can easily withstand temperatures in excess of 200 deg C for short duration and around 70 deg C in continuous service.The aqueous dispersions of PEDOT:PSS, however, can be damaged by heating above 50 deg C for a prolonged period.
How do I test the coductivity of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), PEDOT:PSS?
Conductivity measurements should be performed on poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), PEDOT/PSS, films deposited on flat substrates.This dispersion should be deposited as a thin and homogeneous layer on a flat substrate using deposition techniques, such as spin-coating or doctor blading.The layer thickness can be determined by scratching the film off the substrate in places with a razor blade and scanning the stylus of a mechanical or optical profilometer across the scratched region(s).The sheet resistivity can then be measured with conventional four-point probes.
Can PEDOT:PSS, Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate),coatings be etched?
Yes, applied PEDOT:PSS films can be patterned by laser ablation.
My question is not addressed here, how can I contact Technical Service for assistance?
Ask a Scientist here.
Show more questions
Protocols & Articles

Articles

3D Printing of Carbon Fiber-Reinforced Composites

3D printing is a type of additive manufacturing that can be used to rapidly fabricate components with highly customizable geometries, most typically using a layer-by-layer fabrication process. 3D pri...
Zhenyu Bo* (Ph.D Candidate at Northwestern University) and Jia Choi*, PhD, Product Manager


*Materials Science Product Management Team, MilliporeSigma, Milwaukee, WI.
Keywords: Deposition, Nanomaterials, Nanotubes

Applications of Conducting Polymer Devices in Life Sciences

Leslie H. Jimison1, Dion Khodagholy1, Thomas Doublet1,2, Christophe Bernard2, George G. Malliaras1, and Róisín M. Owens1 1Department of Bioelectronics, Ecole Nationale Supérieure des Mines CMP-EMSE, ...
Keywords: Bacterial conjugations, Cancer, Cell culture, Diagnostic, Diffusion, Electronics, Gastrointestinal, Immunofluorescence, Organic electronics, Semiconductor, Spectroscopy

Conductive Polymers for Advanced Micro- and Nano-fabrication Processes

Conducting polymers such as polyaniline, polythiophene and polyfluorenes are now much in the spotlight for their applications in organic electronics and optoelectronics. Such materials are used, for ...
Rafal Dylewicz1, Norbert Klauke2, Jon Cooper2, Faiz Rahman1*
Material Matters Volume 6 Article 1
Keywords: Deposition, Detection methods, Electronics, Evaporation, Extinction coefficient, Infrared spectroscopy, Microscopy, Organic electronics, Oxidations, Semiconductor

Flexible and Printed Organic Thermoelectrics: Opportunities and Challenges

1 Department of Chemistry, Purdue University, 560 Oval Dr. West Lafayette, IN, 47907, USA. 2 The Organic Thermoelectric Laboratory, Materials Research Institute and School of Biological & Chemical Sc...
Xuyi Luo,1 Bob C. Schroeder,2* Chong-an Di,3* Jianguo Mei1*
Material Matters, 2017, 12.3
Keywords: Alternative energy, Dehydration reaction, Deposition, Detection methods, Diffraction, Diffusion, Environmental, Gene expression, Infrared spectroscopy, Nanotubes, Nucleic acid annealing, Polymerization reactions, Renewable energy, Semiconductor, Separation, Solvents, X-Ray diffraction

Inorganic Interface Layer Inks for Organic Electronic Applications

The commercialisation of organic electronic devices such as organic photovoltaic cells (OPV) and organic light-emitting diode (OLED) lighting continues to accelerate. To make these large-area, high v...
Samuel Halim, Ph.D.
Nanograde AG, Switzerland
Keywords: Degradations, Deposition, Nucleic acid annealing, Sol-gel, Spin coating

Inverted Organic Photovoltaic Devices Using Zinc Oxide Nanocomposites as Electron Transporting Layer Materials

Bryce P. Nelson,1* Pengjie Shi,1 Wei Wei,1 Sai-Wing Tsang2 and Franky So3 1MilliporeSigma, 6000 N. Teutonia Ave., Milwaukee, WI, USA 53209 2Sai-Wing Tsang, Department of Physics and Materials Science...
Keywords: Adsorption, Crystallization, Diffusion, Materials Science, Nucleic acid annealing, Photovoltaics, Reductions, Sol-gel, Solar cells, Spectroscopy

Lithography Nanopatterning Tutorial

Lithography Nanoimprint Lithography Soft Lithography Photochemical Acid Generators Nanopatterning Nanopatterning via Phase Separation of Polymers Self-Assembled Monolayer Systems (SAMS) Norbornadiene...
Keywords: Adhesion, Adsorption, Amplification, Asymmetric synthesis, Biomaterials, Building blocks, Catalysis, Cycloadditions, Deposition, Eliminations, Evaporation, Hydrogenations, Isomerizations, Materials Science, Microelectronics, Petrochemical, Pharmaceutical, Rearrangements, Ring opening metathesis polymerisation, Semiconductor, Separation, Solvents, Spin coating, Thin film deposition, transformation

Nanoparticle-based Zinc Oxide Electron Transport Layers for Printed Organic Photodetectors

Gerardo Hernandez-Sosa,1,2* Ralph Eckstein,1,2 Tobias Rödlmeier,1,2 Uli Lemmer1,2,3 1Lichttechnisches Institut, Karlsruher Institut für Technologie, Engesserstrasse 13, 76131 Karlsruhe, Germany 2Inno...
Gerardo Hernandez-Sosa*, Ralph Eckstein, Tobias Rödlmeier, Uli Lemmer
Material Matters, 2016, 11.2
Keywords: Deposition, Electronics, Positron Emission Tomography, Recombination, Reductions, Solar cells, Thin film deposition

New Conducting and Semiconducting Polymers for Plastic Electronics

In the emerging field of organic printable electronics, such as OLEDs and organic photovoltaics (OPVs), there is a significant need for improved organic conducting and semiconducting materials. This ...
Dr. Silvia Luebben, Dr. Shawn Sapp
Material Matters 2007, 2.3, 11.
Keywords: Bacterial conjugations, Electronics, Environmental, Inductively coupled plasma, Microscopy, Oxidations, Photovoltaics, Purification, Recombination, Renewable energy, Semiconductor, Separation, Solar cells, Solvents, Spectroscopy, Ultraviolet-Visible spectroscopy

Peer-Reviewed Papers
15

References

Related Products

related product

Product #

Description

Add to Cart

08168 Timestrip Plus 8 °C

Technical Service:

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Bulk Ordering & Pricing:

Need larger quantities for your development, manufacturing or research applications?