检测

Abberior® 染料

实现卓越的超分辨显微成像应用

优势

  • 经过优化具有出色的亮度和非常低的背景
  • 优化的开关行为是实现超分辨的关键
  • 所有标记物都经过不同超分辨方法验证
    • 适用于STED、共聚焦和荧光显微镜成像的Abberior STAR
    • 适用于PALM、STORM和GSDIM的Abberior CAGE和FLIP
  • Abberior染料受到知名显微镜供应商推荐
    • 产品具有自主知识产权
    • 提供了详细的染料特性,如最佳STED波长
 

图1:使用Abberior Instruments Expert Line STED显微镜对原代海马神经元成像获得的三色STED图像。请注意,沿远端轴突的典型~190 nm血影蛋白β II(绿色)周期性仅在STED图像中可见。标记的结构和染料:血影蛋白β II(绿色,Abberior STAR580),Bassoon(红色,Abberior STAR635P),肌动蛋白细胞骨架(蓝色,鬼笔环肽,Oregon Green 488)。样品由德国哥廷根马普生物物理化学研究所(MPIBPC)的Elisa D’Este制备。





 

 

 

 

生命科学中的显微术对于细胞和组织结构的可视化非常重要。近年来,显微技术的开发经历了一场革新,使得由衍射极限造成的分辨率屏障被全新的显微学概念打破。这场革新使分辨率极限降低至10 nm左右,同时,细胞结构和分子相互作用的可视化更新了人们对于生物进程的认识和理解。Eric Betzig、Stefan W. Hell和William E. Moerner在超分辨荧光显微成像方面做出了巨大贡献,并因此荣获2014年诺贝尔化学奖。

这些超分辨显微术的原理是基于多种技术方法。传统的光学显微术在x方向和y方向的分辨率极限约为250 nm,在z方向的分辨率极限为450-700 nm。超分辨率技术打破了这种传统的分辨率极限(点扩展函数),至少能够达到1/2。超分辨显微术的分辨率取决于目标结构上能够分辨的点数,因此荧光探针的选择是成功实现超分辨成像的关键。不同状态的亮度和高对比度也是至关重要的。在大多数超分辨方法中,探针的状态必须是可控的、可逆或不可逆的并且可在明暗状态间转换。根据具体的超分辨方法,探针必须满足更多光物理标准。成熟的技术实例有:

  • STED (受激发射损耗)
  • GSDIM (基态损耗)
  • PALM (光激活定位显微术)
  • STORM (随机光学重建显微术)
  • RESOLFT (可逆饱和光(荧光)跃迁)

现在,Sigma能够提供出色的Abberior系列染料,它们专为STED、RESOLFT、PALM、STORM、GSDIM等超分辨显微术设计并经过验证。Abberior STAR、Abberior CAGE、Abberior FLIP、Abberior RSFP – 可满足超分辨技术特殊需求的专业染料。这些染料由Abberior GmbH开发和生产。Stefan Hell为联合创始人。

相比于其他荧光成像技术,超分辨显微术更依赖于荧光标记。由Abberior生产的STAR、CAGE和FLIP染料以及RSFP具有出色的亮度和光稳定性,为RESOLFT和PALM/STORM成像提供了优化的光控开关。它们是唯一能够满足超分辨显微术特殊需求的市售染料。

Abberior也非常适合用于共聚焦显微成像、荧光显微成像和单分子应用。基本上所有依赖于良好信噪比和低背景的荧光应用都能够受益于新型Abberior染料。

 

图2:使用gp210抗体和具有多种特异性的抗体(PAN4/5)以及与Abberior STAR580和Abberior STAR635P偶联的二抗对核孔复合物的两个亚基进行免疫标记。请注意,gp210位于核孔复合物边缘的八重对称结构内。使用Abberior Instruments STEDYCON(紧凑型线路)成像。


产品列表:Abberior染料概述

染料 描述 最大吸收波长 λabs 消光系数 ε 最大荧光波长 λfl 推荐 STED 货号 NHS 货号 马来酰亚胺
Abberior CAGE 500 用于单分子开关显微镜(如,PALM、STORM、GSDIM) 230, 299, 340 nm (未活化,PBS,pH 7.4)
511 nm (光敏化,PBS,pH 7.4)
50,000 M-1cm-1
(光敏化,PBS,pH 7.4)
525 nm (PBS, pH 7.4) 595-615 nm 44254 92546
Abberior CAGE 532 用于单分子开关显微镜(如,PALM、STORM、GSDIM) 237、302、350 nm (未活化,PBS,pH 7.4)
533nm (光敏化,PBS,pH 7.4)
82,000 M-1cm-1
(photoactivated, PBS, pH 7.4)
541 nm (PBS, pH 7.4) 610-640 nm   95705
Abberior CAGE 552 用于单分子开关显微镜(如,PALM、STORM、GSDIM) 231, 308, 350 nm (未活化,PBS,pH 7.4)
552 nm (光敏化,PBS,pH 7.4)
66,000 M-1cm-1
(photoactivated, PBS, pH 7.4)
574 nm (PBS, pH 7.4) 650-670 nm 94822 92545
Abberior CAGE 590 用于单分子开关显微镜(如,PALM、STORM、GSDIM) 262, 325, 351 nm (未活化,PBS,pH 7.4)
595 nm (光敏化,PBS,pH 7.4)
75,000 M-1cm-1
(photoactivated, PBS, pH 7.4)
615 nm (PBS, pH 7.4) 685-715 nm 77958 no
Abberior FLIP 565 用于单分子开关显微镜(如,PALM、STORM、GSDIM) 314 nm (开放,PBS,pH 7.4)
566 nm (光敏化,PBS,pH 7.4)
47,000 M-1cm-1
(open form, PBS pH, 7.4)
580 nm (open form, PBS, pH 7.4) - 79189 92544
Abberior STAR 440SXP for long Stokes STED and 2-color STED application 432 nm (PBS, pH 7.4) 33,000 M-1cm-1
(PBS, pH 7.4)
511 nm (PBS, pH 7.4) 590-620 nm 68221 38361
Abberior STAR 470SXP for long Stokes STED and 2-color STED application 467 nm (PBS, pH 7.4) 29,000 M-1cm-1
(PBS, pH 7.4)
598 nm (PBS, pH 7.4) 740-770 nm 94716 no
Abberior STAR 488 for STED application 503 nm (PBS, pH 7.4) 65,000 M-1cm-1
(PBS, pH 7.4)
524 nm (PBS, pH 7.4) 585-605 nm 61048 no
Abberior STAR 512 for STED application 511 nm (PBS, pH 7.4) 85,000 M-1cm-1
(PBS, pH 7.4)
530 nm (PBS, pH 7.4) 590-620 nm 38922 03004
Abberior STAR 580 for STED application 587 nm (PBS, pH 7.4) 85,000 M-1cm-1
(PBS, pH 7.4)
607 nm (PBS, pH 7.4) 690-720 nm 38377 no
Abberior STAR 635 for STED application 635 nm (PBS, pH 7.4) 110,000 M-1cm-1
(PBS, pH 7.4)
655 nm (PBS, pH 7.4) 740-770 nm 30558 96013
Abberior STAR 635P for STED application 638 nm (PBS, pH 7.4) 120,000 M-1cm-1
(PBS, pH 7.4)
651 nm (PBS, pH 7.4) 740-770 nm 07679 no

 

我们还为北美地区提供了一系列抗体标记的Abberior复合物。
 

货号 描述 供货地区 包装规格
53647 Anti-Rabbit IgG-Abberior® CAGE 635 antibody produced in goat 仅英国 500ug
30483 Anti-Mouse IgG-Abberior® CAGE 635 antibody produced in goat 仅英国 500ug
54287 Anti-Rabbit IgG-Abberior® CAGE 590 antibody produced in goat 仅英国 500ug
53364 Anti-Mouse IgG-Abberior® CAGE 590 antibody produced in goat 仅英国 500ug
40544 Anti-Rabbit IgG-Abberior® CAGE 552 antibody produced in goat 仅英国 500ug
53165 Anti-Mouse IgG-Abberior® CAGE 552 antibody produced in goat 仅英国 500ug
53601 Anti-Rabbit IgG-Abberior® CAGE 532 antibody produced in goat 仅英国 500ug
52996 Anti-Mouse IgG-Abberior® CAGE 532 antibody produced in goat 仅英国 500ug
41155 Anti-Rabbit IgG-Abberior® CAGE 500 antibody produced in goat 仅英国 500ug
52953 Anti-Mouse IgG-Abberior® CAGE 500 antibody produced in goat 仅英国 500ug
52283 Anti-Mouse IgG-Abberior® STAR  RED antibody produced in goat 仅英国 500ug
53399 Anti-Rabbit IgG-Abberior® STAR 635P antibody produced in goat 仅英国 500ug
41699 Anti-Rabbit IgG-Abberior® STAR RED antibody produced in goat 仅英国 500ug
41348 Anti-Rabbit IgG-Abberior® STAR 635 antibody produced in goat 仅英国
(available soon)
500ug
40734 Anti-Mouse IgG-Abberior® STAR 635 antibody produced in goat 仅英国 500ug
53654 Anti-Rabbit IgG-Abberior® STAR 600 antibody produced in goat 仅英国 500ug
41367 Anti-Rabbit IgG-Abberior® STAR 580 antibody produced in goat 仅英国 500ug
52597 Anti-Mouse IgG-Abberior® STAR 600 antibody produced in goat 仅英国 500ug
52403 Anti-Mouse IgG-Abberior® STAR 580 antibody produced in goat 仅英国 500ug
52932 Anti-Rabbit IgG-Abberior® STAR 520SXP antibody produced in goat 仅英国 500ug
41372 Anti-Mouse IgG-Abberior® STAR  520SXP antibody produced in goat 仅英国 500ug
52269 Anti-Mouse IgG-Abberior® STAR 512 antibody produced in goat 仅英国 500ug
00289 Anti-Rabbit IgG-Abberior® STAR 512 antibody produced in goat 仅英国 500ug
52944 Anti-Rabbit IgG-Abberior® STAR 488 antibody produced in goat 仅英国 500ug
53366 Anti-Mouse IgG-Abberior® STAR 488 antibody produced in goat 仅英国 500ug
52187 Anti-Mouse IgG-Abberior® STAR 470SXP antibody produced in goat 仅英国 500ug
41324 Anti-Rabbit IgG-Abberior® STAR 470SXP antibody produced in goat 仅英国 500ug
41860 Anti-Rabbit IgG-Abberior® STAR 440SXP antibody produced in goat 仅英国 500ug
41738 Anti-Mouse IgG-Abberior® STAR 440SXP antibody produced in goat 仅英国 500ug

 

 

  1. Leica Microsystems recommendations for 2-color applications.
  2. T. Müller, C. Schumann, A. Kraegeloh, STED Microscopy and its Applications: New Insights into Cellular Processes on the Nanoscale, ChemPhysChem 13, 1986–2000 (2012).
  3. Tim Grotjohann, Ilaria Testa, Marcel Leutenegger, Hannes Bock, Nicolai T. Urban, Flavie Lavoie-Cardinal, Katrin I. Willig, Christian Eggeling, Stefan Jakobs, Stefan W. Hell, Diffraction-unlimited all-optical imaging and writing with a photochromic GFP, Nature 478, 204-208 (13 October 2011).
  4. V. N. Belov et al., "Rhodamines NN: A Novel Class of Caged Fluorescent Dyes", Angew. Chem. Int. Ed. 49, 3520−3523 (2010).
  5. T. Karlsson, M. V. Turkina, O. Yakymenko, K.-E. Magnusson, E. Vikström "The Pseudomonas aeruginosa N-Acylhomoserine Lactone Quorum Sensing Molecules Target IQGAP1 and Modulate Epithelial Cell Migration", PLoS Pathog, 8(10), e1002953, DOI: 10.1371/journal.pp (2012).
  6. Xinxin Zhu , Ya-Ting Kao , Wei Min "Molecular-Switch-Mediated Multiphoton Fluorescence Microscopy with High-Order Nonlinearity", J. Phys. Chem. Lett., 3 (15), pp. 2082–2086, DOI: 10.1021/jz300607c (2012).
  7. Francisco Balzarotti , Fernando D. Stefani "Plasmonics Meets Far-Field Optical Nanoscopy", ACS Nano, 6 (6), pp. 4580–4584, DOI: 10.1021/nn302306m (2012).
  8. Arnaud P. Giese, Jérome Ezan, Lingyan Wang, Léa Lasvaux, Frédérique Lembo, Claire Mazzocco, Elodie Richard, Jérome Reboul, Jean-Paul Borg, Matthew W. Kelley, Nathalie Sans, John Brigande, Mireille Montcouquiol "Gipc1 has a dual role in Vangl2 trafficking and hair bundle integrity in the inner ear", Development 139, pp. 3775-3785, DOI:10.1242/dev.074229 (2012)
  9. Nicolas Olivier, Debora Keller, Vinoth Sundar Rajan, Pierre Gönczy, Suliana Manley "Simple buffers for 3D STORM microscopy", Biomedical Optics Express, 4 (6), pp. 885-899, DOI: 10.1364/BOE.4.000885 (2013)
  10. S. Li, C.-f. Kuang, Y.-f. Wang, X. Hao, P. Xiu, Y.-k. Xu, X. Liu, "High Speed Optical Nanoscopy by Stimulated Emission Depletion (STED) with Galvo Mirrors", roc. SPIE 8911, International Symposium on Photoelectronic Detection and Imaging 2013: Micro/Nano Optical Imaging Technologies and Applications (2013)
  11. F. C. Zanacchi, Z. Lavagnino, M. Faretta, L. Furia, A. Diaspro, "Light-Sheet Confined Super-Resolution Using Two-Photon Photoactivation", PloS ONE, 8(7): e67667 (2013)
  12. G. Vicidomini, I. C. Hernández, M. D'Amora, F. C. Zanacchi, P. Bianchini, A. Diaspro, "Gated CW-STED Microscopy: A Versatile Tool for Biological Nanometer Scale Investigation", Methods, science direct (2013)
  13. H. Blom, D. Rönnlund, L. Scott, L. Westin, J. Widengren, A. Aperia, H. Brismar, „Spatial Distribution of DARPP-32 in Dendritic Spines“, PloS ONE, 8(9) (2013)
  14. F. Göttfert, C.A. Wurm, V. Müller, S. Berning, V.C. Cordes, A. Honigmann, S.W. Hell, „Coaligned Dual-Channel STED Nanoscopy and molecular diffusion analysis at 20 nm resolution“, Biophysical Journal, Volume 105, Issue 1(2013)
  15. K. Kolmakov, C. A. Wurm, R. Hennig, E. Rapp, S. Jakobs, V. N. Belov, S. W. Hell, "Red-Emitting Rhodamines with Hydroxylated, Sulfonated, and Phosphorylated Dye Residues and Their Use in Fluorescence Nanoscopy" Chem. Eur. J. 2012, 18, 12986 –12998 (2013)
  16. C. A. Wurm, K. Kolmakov, F. Göttfert, H. Ta, M. L. Bossi, H. Schill, S. Berning, S. Jakobs, G. Donnert, V. N. Belov, S. W. Hell, "Novel red fluorophores with superior performance in STED microscopy", Optical Nanoscopy 2012; DOI: 10.1186/ 2192-2853-1-7 (2013)
  17. S. Rocha, H. De Keersmaecker, H. Uji-i, J. Hofkens, H. Mizuno, "Photoswitchable Fluorescent Proteins for Superresolution Fluorescence Microscopy Circumventing the Diffraction Limit of Light" in Fluorescence Spectroscopy and Microscopy (Eds.: Y. Engelborghs, A. J. W. G. Visser), Humana Press, Vol. pp. 793-812 (2013)
  18. J. V. Chacko, F. C. Zanacchi, A. Diaspro, "Probing Cytoskeletal Structures by Coupling Optical Superresolution and AFM Techniques for a Correlative Approach", Cytoskeleton, 70(11), pp. 729–740, DOI: 10.1002/cm.21139 (2013)
  19. I.-H. Wang, M- Suomalainen, V. Andriasyan, S. Kilcher, J. Mercer, A. Neef, N. W. Luedtke, U. F. Greber, "Tracking Viral Genomes in Host Cells and Single Molecule Resolution", Cell Host Microbe, 14(4), pp. 468–480, DOI: 10.1016/j.chom.2013.09.004 (2013)
  20. H. Schill, S. Nizamov, F. Bottanelli, J. Bierwagen, V. N. Belov, S. W. Hell, "4-Trifluoromethyl-Substituted Coumarins with Large Stokes Shifts: Synthesis, Bioconjugates, and Their Use in Super-Resolution Fluorescence Microscopy", Chem. Eur. J., 19(49), pp. 16556–16565, DOI: 10.1002/chem.201302037 (2013)
  21. Y. Wang, C. Kuang, Z. Gu, Y. Xu, S. Li, X. Hao, X. Liu, "Time-Gated Stimulated Emission Depletion Nanoscopy", Opt. Eng., 52(9), 093107, DOI: 10.1117/1.OE.52.9.093107 (2013)
  22. M. V. Sednev, C. A. Wurm, V. N. Belov, S. W. Hell, "Carborhodol: A New Hybrid Fluorophore Obtained by Combination of Fluorescein and Carbopyronine Dye Cores", Bioconjugate Chem., 24(4), pp 690–700, DOI: 10.1021/bc3006732 (2013)
  23. The Nobel Prize in Chemistry 2014". Nobelprize.org. Nobel Media AB 2014. Web. 14 Oct 2014.

Abberior是Abberior GmbH的注册商标。